×

Bogdanov-Takens bifurcation for a diffusive predator-prey system with nonlocal effect and prey refuge. (English) Zbl 1510.35037

In this paper, some existence conditions of Turing bifurcation, Bogdanov-Takens bifurcation, Hopf bifurcation and Turing-Turing bifurcation are obtained for a diffusive predator-prey system with nonlocal effect and prey refuge subjects to the homogeneous Neumann boundary condition. The spatiotemporal dynamics near the Bogdanov-Takens bifurcation point is analyzed by utilizing the normal form theory. Some numerical simulations are provided to support the theory analysis.

MSC:

35B32 Bifurcations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35R09 Integro-partial differential equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Wollkind, DJ; Collings, JB; Logan, JA, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, Bull. Math. Biol., 50, 4, 379-409 (1988) · Zbl 0652.92019 · doi:10.1016/S0092-8240(88)90005-5
[2] Holling, CS, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97, 5-60 (1965) · doi:10.4039/entm9745fv
[3] Murray, JD, Mathematical Biology (1989), Berlin: Springer-Verlag, Berlin · Zbl 0682.92001 · doi:10.1007/978-3-662-08539-4
[4] Leslie, PH, Some further notes on the use of matrices in population mathematics, Biometrika, 35, 3, 213-245 (1948) · Zbl 0034.23303 · doi:10.1093/biomet/35.3-4.213
[5] Leslie, PH; Gower, JC, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47, 3, 219-234 (1960) · Zbl 0103.12502 · doi:10.1093/biomet/47.3-4.219
[6] May, RM, Stability and Complexity in Model Ecosystems (1973), Princeton: Princeton University Press, Princeton · Zbl 0253.92006
[7] Merchant, SM; Nagata, W., Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor. Popul. Biol., 80, 4, 289-297 (2011) · Zbl 1323.92177 · doi:10.1016/j.tpb.2011.10.001
[8] Merchant, SM; Nagata, W., Selection and stability of wave trains behind predator invasions in a model with non-local prey competition, IMA J. Appl. Math., 80, 4, 1155-1177 (2015) · Zbl 1330.35475 · doi:10.1093/imamat/hxu048
[9] Banerjee, M.; Volpert, V., Prey-predator model with a nonlocal consumption of prey, Chaos Interdiscip. J. Nonlinear Sci., 26, 8 (2016) · Zbl 1378.92080 · doi:10.1063/1.4961248
[10] Banerjee, M.; Volpert, V., Spatio-temporal pattern formation in Rosenzweig-Macarthur model: effect of nonlocal interactions, Ecol. Complex., 30, 2-10 (2017) · doi:10.1016/j.ecocom.2016.12.002
[11] Pal, S.; Ghorai, S.; Banerjee, M., Analysis of a prey-predator model with non-local interaction in the prey population, Bull. Math. Biol., 80, 4, 906-925 (2018) · Zbl 1390.92117 · doi:10.1007/s11538-018-0410-x
[12] Ni, WJ; Shi, JP; Wang, MX, Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model, J. Differ. Equ., 264, 11, 6891-6932 (2018) · Zbl 1397.35124 · doi:10.1016/j.jde.2018.02.002
[13] Djilali, S., Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43, 5, 2233-2250 (2020) · Zbl 1452.92033 · doi:10.1002/mma.6036
[14] Furter, J.; Grinfeld, M., Local vs. non-local interactions in population dynamics, J. Math. Biol., 27, 1, 65-80 (1989) · Zbl 0714.92012 · doi:10.1007/BF00276081
[15] Haque, M.; Venturino, E., The role of transmissible diseases in the Holling-Tanner predator-prey model, Theor. Popul. Biol., 70, 3, 273-288 (2006) · Zbl 1112.92053 · doi:10.1016/j.tpb.2006.06.007
[16] Saha, T.; Chakrabarti, C., Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model, J. Math. Anal. Appl., 358, 2, 389-402 (2009) · Zbl 1177.34103 · doi:10.1016/j.jmaa.2009.03.072
[17] Arancibia-Ibarra, C.; Flores, JD; Pettet, G., A Holling-Tanner predator-prey model with strong Allee effect, Int. J. Bifurc. Chaos., 29, 11, 1930032 (2019) · Zbl 1439.34049 · doi:10.1142/S0218127419300325
[18] Arancibia-Ibarra, C.; Bode, M.; Flores, J., Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator, Commun. Nonlinear Sci. Numer. Simul., 99 (2021) · Zbl 1466.92139 · doi:10.1016/j.cnsns.2021.105802
[19] Kar, TK, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10, 6, 681-691 (2005) · Zbl 1064.92045 · doi:10.1016/j.cnsns.2003.08.006
[20] Ko, W.; Ryu, K., Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differ. Equ., 231, 2, 534-550 (2006) · Zbl 1387.35588 · doi:10.1016/j.jde.2006.08.001
[21] Huang, YJ; Chen, FD; Zhong, L., Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge, Appl. Math. Comput., 182, 1, 672-683 (2006) · Zbl 1102.92056
[22] Tripathi, JP; Abbas, S.; Thakur, M., Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80, 1, 177-196 (2015) · Zbl 1345.92125 · doi:10.1007/s11071-014-1859-2
[23] Sharma, S.; Samanta, GP, A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge, Chaos Solitons Fractals, 70, 69-84 (2015) · Zbl 1352.92134 · doi:10.1016/j.chaos.2014.11.010
[24] Zhang, HS; Cai, YL; Fu, SM, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356, 328-337 (2019) · Zbl 1428.92099
[25] Li, HL; Zhang, L.; Hu, C., Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54, 1, 435-449 (2017) · Zbl 1377.34062 · doi:10.1007/s12190-016-1017-8
[26] Sarwardi, S.; Mandal, PK; Ray, S., Analysis of a competitive prey-predator system with a prey refuge, Biosystems, 110, 3, 133-148 (2012) · doi:10.1016/j.biosystems.2012.08.002
[27] Wiggins, S.; Golubitsky, M., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003), New York: Springer, New York · Zbl 1027.37002
[28] Faria, T.; Magalhaes, LT, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differ. Equ., 122, 2, 201-224 (1995) · Zbl 0836.34069 · doi:10.1006/jdeq.1995.1145
[29] Jiang, J.; Song, YL, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback, Appl. Math. Model., 37, 16-17, 8091-8105 (2013) · Zbl 1438.34249 · doi:10.1016/j.apm.2013.03.034
[30] Jiang, J.; Song, YL, Delay-induced Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with nonmonotonic functional response, Commun. Nonlinear Sci. Numer. Simul., 19, 7, 2454-2465 (2014) · Zbl 1457.92140 · doi:10.1016/j.cnsns.2013.11.020
[31] Song, YL; Zhang, TH; Peng, YH, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33, 229-258 (2016) · Zbl 1510.35150 · doi:10.1016/j.cnsns.2015.10.002
[32] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), New York: Springer-Verlag, New York · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[33] Hirschberg, P.; Knobloch, E., An unfolding of the Takens-Bogdanov singularity, Q. Appl. Math., 49, 2, 281-287 (1991) · Zbl 0731.58049 · doi:10.1090/qam/1106393
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.