×

Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays. (English) Zbl 1510.34027

Summary: In this article, the problem of the global Mittag-Leffler synchronization is proposed for a sort of discrete-time fractional-order neural networks (DFNNs) with delays. In the first place, a flesh power law inequality pertaining to fractional difference is constructed by means of integration by parts, Young inequality, and some properties about fractional-order difference. In addition, based on aforesaid inequalities, Lyapunov function theory and properties of nabla Mittag-Leffler function as well as inequality techniques, some plentiful criteria are formed to achieve the global Mittag-Leffler synchronization for the delayed DFNNs via devising novel adaptive controller and delay feedback controller. In the end, numerical modeling is given to demonstrate effectiveness of theoretical verdicts.

MSC:

34A08 Fractional ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Hoppensteadt, F.; Izhikevich, E., Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11, 734-738 (2000)
[2] Pearson, M.; Pipe, A.; Mitchinson, B.; Gurney, K.; Melhuish, C.; Gilhespy, I.; Nibouche, M., Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach, IEEE Trans. Neural Netw., 18, 1472-1487 (2007)
[3] Hu, X.; Feng, G.; Duan, S.; Liu, L., Multilayer RTD-memristor-based cellular neural networks for color image processing, Neurocomputing, 162, 150-162 (2015)
[4] Lakshmanan, S.; Park, J.; Jung, H.; Balasubramaniam, P., Design of state estimator for neural networks with leakage, discrete and distributed delays, Appl. Math. Comput., 218, 11297-11310 (2012) · Zbl 1277.93078
[5] Ali, M.; Saravanan, S.; Zhu, Q., Non-fragile finite-time h \({}_\infty\) state estimation of neural networks with distributed time-varying delay, J. Frankl. Inst., 354, 7566-7584 (2017) · Zbl 1373.93331
[6] Zhang, D.; Cheng, J.; Cao, J.; Zhang, D., Finite-time synchronization control for semi-Markov jump neural networks with mode-dependent stochastic parametric uncertainties, Appl. Math. Comput., 344, 230-242 (2019) · Zbl 1428.93129
[7] Yang, X.; Cao, J.; Liang, J., Exponential synchronization of memristive neural networks with delays: interval matrix method, IEEE Trans. Neural Netw. Learn. Syst., 28, 1878-1888 (2016)
[8] Shen, H.; Zhu, Y.; Zhang, L.; Park, J., Extended dissipative state estimation for Markov jump neural networks with unreliable links, IEEE Trans. Neural Netw. Learn. Syst., 28, 346-358 (2017)
[9] Mei, J.; Jiang, M.; Wang, B.; Long, B., Finite-time parameter identification and adaptive synchronization between two chaotic neural networks, J. Frankl. Inst., 350, 1617-1633 (2013) · Zbl 1293.93214
[10] Bao, H.; Cao, J., Projective synchronization of fractional-order memristor-based neural networks, Neural Netw., 63, 1-9 (2015) · Zbl 1323.93036
[11] Li, H.; Hu, C.; Cao, J.; Jiang, H.; Alsaedi, A., Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118, 102-109 (2019) · Zbl 1443.93049
[12] Pratap, A.; Raja, R.; Cao, J.; Rajchakit, G.; Fardoun, H., Stability and synchronization criteria for fractional order competitive neural networks with time delays: an asymptotic expansion of mittag leffler function, J. Frankl. Inst., 356, 2212-2239 (2019) · Zbl 1409.93039
[13] Cao, J.; Lu, J., Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16, 013133 (2006) · Zbl 1144.37331
[14] Guo, Z.; Wang, S.; Wang, J., Global exponential synchronization of coupled delayed memristive neural networks with reaction-diffusion terms via distributed pinning controls, IEEE Trans. Neural Netw. Learn. Syst., 32, 105-116 (2020)
[15] Wang, L.; Shen, Y.; Zhang, G., Synchronization of a class of switched neural networks with time-varying delays via nonlinear feedback control, IEEE Trans. Cybern., 46, 10, 2300-2310 (2016)
[16] Yang, X.; Li, C.; Huang, T.; Song, Q.; Huang, J., Global mittag-leffler synchronization of fractional-order neural networks via impulsive control, Neural Process. Lett., 8, 459-479 (2018)
[17] Li, H.; Jiang, H.; Cao, J., Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays, Neurocomputing, 385, 211-219 (2020)
[18] Wang, L.; He, H.; Zeng, Z., Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28, 2022-2034 (2020)
[19] Zhang, L.; Zhu, Y.; Zheng, W., Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 27, 459-470 (2015)
[20] Tripathi, D.; Pandey, S.; Das, S., Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel, Appl. Math. Comput., 215, 3645-3654 (2010) · Zbl 1352.76131
[21] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Elsevier, New York · Zbl 1092.45003
[22] Kaslik, E.; Sivasundaram, S., Nonlinear dynamics and chaos in fractional-order neural networks, Neural Netw., 32, 245-256 (2012) · Zbl 1254.34103
[23] Isfer, L.; Lenzi, E.; Teixeira, G.; Lenzi, M., Fractional control of an industrial furnace, Acta Sci. Technol., 32, 279-285 (2010)
[24] Stamova, I., Global mittag-leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays, Nonlinear Dyn., 77, 1251-1260 (2014) · Zbl 1331.93102
[25] Chen, J.; Zeng, Z.; Jiang, P., Global mittag-leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Netw., 51, 1-8 (2014) · Zbl 1306.34006
[26] Peng, X.; Wu, H.; Song, K.; Shi, J., Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural Netw., 94, 46-54 (2017) · Zbl 1437.93116
[27] Kao, Y.; Li, Y.; Park, J.; Chen, X., Mittag-leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neural Netw. Learn. Syst., 32, 2279-2284 (2020)
[28] Wang, M.; Jia, B.; Chen, C.; Zhu, X.; Du, F., Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-lipschitz nonlinearities, Appl. Math. Comput., 376, 118-125 (2020) · Zbl 1475.26027
[29] Gu, Y.; Wang, H.; Yu, Y., Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput., 372, 124995 (2020) · Zbl 1433.34070
[30] Wu, G.; Baleanu, D., Stability analysis of impulsive fractional difference equations, Fract. Calc. Appl. Anal., 21, 354-375 (2018) · Zbl 1398.39009
[31] Wu, G.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K., Mittag-leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal. Model. Control, 24, 919-936 (2019) · Zbl 1434.39006
[32] Huang, L.; Park, J.; Wu, Z. G., Variable-order fractional discrete-time recurrent neural networks, J. Compu. Appl. Math., 370, 112633 (2020) · Zbl 1432.39012
[33] Wu, G.; Baleanu, D.; Luo, H., Lyapunov functions for Riemann-Liouville-like fractional difference equations, Appl. Math. Comput., 314, 228-236 (2017) · Zbl 1426.39010
[34] Li, R.; Cao, J.; Xue, C.; Manivannan, R., Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks, Appl. Math. Comput., 395, 125851 (2021) · Zbl 1508.39005
[35] You, X.; Song, Q.; Zhao, Z., Global mittag-leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay, Neural Netw., 122, 382-394 (2020) · Zbl 1444.93025
[36] Pratap, A.; Raja, R.; Cao, J.; Huang, C.; Niezabitowski, M.; Bagdasar, O., Stability of discrete-time fractional-order time-delayed neural networks in complex field, Math. Method Appl. Sci., 44, 419-440 (2021) · Zbl 1479.39020
[37] Wu, G.; Çankaya, M.; Banerjee, S., Fractional \(q\)-deformed chaotic maps: a weight function approach, Chaos, 30, 121106 (2020) · Zbl 1455.39002
[38] Wu, G.; Deng, Z.; Baleanu, D.; Zeng, D., New variable-order fractional chaotic systems for fast image encryption, Chaos, 29, 083103 (2019) · Zbl 1420.34028
[39] Abdeljawad, T., On Riemann and Caputo fractional differences, Comput. Math. Appl., 62, 1602-1611 (2011) · Zbl 1228.26008
[40] Abdeljawad, T.; Atici, F., On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012) · Zbl 1253.39004
[41] Goodrich, C.; Peterson, A., Discrete Fractional Calculus (2015), Springer, New York · Zbl 1350.39001
[42] Abdeljawad, T.; Jarad, F.; Baleanu, D., A semigroup-like property for discrete mittag-leffler functions, Adv. Differ. Equ., 2012, 1-7 (2012) · Zbl 1292.39001
[43] Abdeljawad, T.; Baleanu, D., Monotonicity analysis of a nabla discrete fractional operator with discrete mittag-leffler kernel, Chaos, Soliton. Fract., 102, 106-110 (2017) · Zbl 1374.26011
[44] Hardy, G.; Littlewood, J.; Plya, G., Inequalities (1952), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0047.05302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.