×

On factorization of multivectors in \(Cl(3,0)\), \(Cl(1,2)\) and \(Cl(0,3)\), by exponentials and idempotents. (English) Zbl 1510.15039

Summary: In this paper, we consider general multivector elements of Clifford algebras \(Cl(3,0)\), \(Cl(1,2)\) and \(Cl(0,3)\), and look for possibilities to factorize multivectors into products of blades, idempotents and exponentials, where the exponents are frequently blades of grades zero (scalar) to \(n\) (pseudoscalar).

MSC:

15A66 Clifford algebras, spinors
15A23 Factorization of matrices
15A16 Matrix exponential and similar functions of matrices
Full Text: DOI

References:

[1] Buchholz, S, Tachibana, K, Hitzer, E. Optimal learning rates for Clifford Neurons. In: de Sá JM, Alexandre LA, Duch W, Mandic D., editors. Artificial neural networks - ICANN 2007. Berlin, Heidelberg: Springer; 2007; p. 864-873. (Lecture notes in computer science; 4668).
[2] Buchholz, S, Hitzer, E, Tachibana, K. Coordinate independent update formulas for versor Clifford neurons. In: Proceedings of Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on Advanced Intelligent Systems; 2008 Sep 17-21; Nagoya, Japan; 2008. p. 814-819.
[3] Hestenes, D.; Sobczyk, G., Clifford algebra to geometric calculus: a unified language for mathematics and physics (1984), Heidelberg: Springer, Heidelberg · Zbl 0541.53059
[4] Lounesto, P., Clifford algebras and spinors (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.15022
[5] Hitzer, E.; Nitta, T.; Kuroe, Y., Applications of Clifford’s geometric algebra, Adv Appl Clifford Algebras, 23, 377-404 (2013) · Zbl 1269.15022
[6] Xambó-Descamps, S., Real spinorial groups: a short mathematical introduction (2018), Cham: Springer Nature Switzerland AG, Cham · Zbl 1406.15003
[7] Hitzer, E.; Sangwine, SJ, Quaternion and Clifford Fourier transforms and wavelets (2013), Basel: Birkhäuser, Basel
[8] Dorst, L, Valkenburg, R. Square root and logarithm of rotors in 3D conformal geometric algebra using polar decomposition. In: Dorst L, Lasenby J, editors. Guide to geometric algebra in practice. London: Springer; 2011. p. 81-104. · Zbl 1290.68121
[9] Hitzer, E.; Abłamowicz, R., Geometric roots of \(####\) in Clifford algebras \(####\) with \(####\), Adv Appl Clifford Algebras, 21, 1, 121-144 (2011) · Zbl 1216.15019
[10] Hitzer, E, Helmstetter, J, Abłamowicz, R. Maple worksheets created with \(####\) for a verification of results in [11]. Available from: http://math.tntech.edu/rafal/publications.html (© 2012). · Zbl 1273.15025
[11] Hitzer, E, Helmstetter, J, Abłamowicz, R. Square roots of \(####\) in real Clifford algebras. In: Hitzer E, Sangwine SJ, editors. Quaternion and Clifford Fourier transforms and wavelets. Basel: Birkhäuser; 2013. p. 123-153. (Trends in mathematics; 27). · Zbl 1273.15025
[12] Sangwine, SJ., Biquaternion (complexified quaternion) roots of \(####\), Adv Appl Clifford Algebras, 16, 1, 63-68 (2006) · Zbl 1107.30038
[13] Hitzer, E.; Sangwine, SJ., Multivector and multivector matrix inverses in real Clifford algebras, Appl Math Comp, 311, C, 375-389 (2017) · Zbl 1426.15035
[14] Lasenby, J.; Hadfield, H.; Lasenby, A., Calculating the rotor between conformal objects, Adv Appl Clifford Algebras, 29, 102, 1-9 (2019) · Zbl 1430.53041
[15] Sangwine, SJ; Hitzer, E., Polar decomposition of complexified quaternions and octonions, Adv Appl Clifford Algebras, 30, 23, 1-12 (2020) · Zbl 1448.15016
[16] Hitzer, E., Exponential factorization of multivectors in \(####\), p + q<3, Math Meth Appl Sci, 1-15 (2020) · Zbl 07869444 · doi:10.1002/mma.6629
[17] Hitzer, E., Introduction to Clifford’s geometric algebra, J Soc Instrum Control Eng, 51, 4, 338-350 (2012)
[18] Falcao, MI; Malonek, HR., Generalized exponentials through Appell sets in \(####\) and Bessel functions, AIP Conf Proc, 936, 738-741 (2007) · Zbl 1152.33306
[19] Sangwine, SJ, Hitzer, E. Clifford multivector toolbox (for MATLAB), 2015-2021, Software library. Available from: http://clifford-multivector-toolbox.sourceforge.net/.
[20] Dorst, L.; Lasenby, J., Guide to geometric algebra in practice (2011), London: Springer, London · Zbl 1234.68004
[21] Hestenes, D., Space-time algebra (2015), Basel: Birkhäuser, Basel · Zbl 0183.28901
[22] Doran, C.; Lasenby, A., Geometric algebra for physicists (2007), Cambridge (UK): Cambridge University Press, Cambridge (UK) · Zbl 1135.53001
[23] Hitzer, E., Special relativistic Fourier transformation and convolutions, Math Methods Appl Sci, 42, 7, 2244-2255 (2019) · Zbl 1414.42008
[24] Girard, PR, Clarysse, P, Pujol, R, et al. Hyperquaternions: an efficient mathematical formalism for geometry. In: Nielsen F, Barbaresco F, editors. Geometric science of information 2019. Springer: Cham; 2019; p. 116-125. (LNCS; 11712). · Zbl 1458.15041
[25] Girard, PR; Clarysse, P.; Pujol, R., Hyperquaternions: a new tool for physics, Adv Appl Clifford Algebras, 28, 68, 1-14 (2018) · Zbl 1402.15018
[26] Hitzer, E. Creative peace license. Available from: http://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/.
[27] Hitzer, E.; Sangwine, SJ., Foundations of conic conformal geometric algebra and compact versors for rotation, translation and scaling, Adv Appl Clifford Algebras, 29, 96, 1-16 (2019) · Zbl 1430.51033
[28] Genesis chapter 1 verse 1, in The Holy Bible, English Standard Version. Wheaton (IL): Crossway Bibles, Good News Publishers; 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.