×

On the equality of periods of Kontsevich-Zagier. (English. French summary) Zbl 1510.11127

This paper is devoted to periods. M. Kontsevich and D. Zagier have given a concrete definition of periods as integrals [in: Mathematics unlimited – 2001 and beyond. Berlin: Springer. 771–808 (2001; Zbl 1039.11002)]. They have conjectured that if a real period admits two integral representations, then one can pass from one to the other using only three operations: additions (by domains or integrands), change of variables and the Stokes formula.
J. Viu-Sos has proved [Int. J. Number Theory 17, No. 1, 147–174 (2021; Zbl 1467.14040)] that using these operations, any positive real period can be effectively written as the volume of a compact semi-algebraic set. Motivated by this result, the authors suggest in the present paper the following conjecture (and prove that it implies Kontsevich-Zagier’s):
Conjecture. Let \(K_1\) and \(K_2\) be compact top-dimensional semi-algebraic sets in \(\mathbb{R}^d\) with the same volume. Then one can transform \(K_1\) into \(K_2\) using only Cartesian product relations, semi-algebraic scissors congruences and algebraic volume-preserving maps respecting the Kontsevich-Zagier operations.
The authors discuss also many related topics, including piecewise-linear geometry and a possible replacement of the Stokes formula.

MSC:

11J81 Transcendence (general theory)
14P10 Semialgebraic sets and related spaces
51M20 Polyhedra and polytopes; regular figures, division of spaces
51M25 Length, area and volume in real or complex geometry
52B45 Dissections and valuations (Hilbert’s third problem, etc.)

References:

[1] André, Yves, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17 (2004), Société Mathématique de France · Zbl 1060.14001
[2] André, Yves, Idées galoisiennes, 1-16 (2012), Éditions de l’École polytechnique · Zbl 1346.11003
[3] Ayoub, Joseph, Periods and the conjectures of Grothendieck and Kontsevich-Zagier, Eur. Math. Soc. Newsl., 91, 12-18 (2014) · Zbl 1306.14006
[4] Ayoub, Joseph, Une version relative de la conjecture des périodes de Kontsevich-Zagier, Ann. Math., 181, 3, 905-992 (2015) · Zbl 1408.32016 · doi:10.4007/annals.2015.181.3.2
[5] Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise, Algorithms in real algebraic geometry, 10 (2006), Springer · Zbl 1102.14041
[6] Blass, Andreas; Schanuel, Stephen, On the volume of balls
[7] Bochnak, Jacek; Coste, Michel; Roy, Marie-Françoise, Real Algebraic Geometry (1998), Springer · Zbl 0912.14023 · doi:10.1007/978-3-662-03718-8
[8] Borisov, Lev A., The class of the affine line is a zero divisor in the Grothendieck ring, J. Algebr. Geom., 27, 2, 203-209 (2018) · Zbl 1415.14006 · doi:10.1090/jag/701
[9] Cartier, Pierre, Séminaire Bourbaki 1984/85, 1984, Décomposition des polyèdres: le point sur le troisième problème de Hilbert, 133-134 (1986), Société Mathématique de France · Zbl 0589.51032
[10] Commelin, Johan; Habegger, Philipp; Huber, Annette, Exponential periods and o-minimality I (2020)
[11] Cresson, Jacky; Viu-Sos, Juan, On the transcendence and complexity of periods of Kontsevich-Zagier
[12] Dehn, Max, Ueber den Rauminhalt, Math. Ann., 55, 3, 465-478 (1901) · JFM 32.0486.01 · doi:10.1007/BF01448001
[13] Fischler, Stéphane; Rivoal, Tanguy, On the values of \({G}\)-functions, Comment. Math. Helv., 89, 2, 313-341 (2014) · Zbl 1304.11070 · doi:10.4171/CMH/321
[14] Hardt, Robert; Lambrechts, Pascal; Turchin, Victor; Volić, Ismar, Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol., 11, 5, 2477-2545 (2011) · Zbl 1254.14066 · doi:10.2140/agt.2011.11.2477
[15] Henriques, Andre; Pak, Igor, Volume-preserving PL-maps between polyhedra (2004)
[16] Huber, Annette; Wüstholz, Gisbert, Transcendence and Linear Relations of 1-Periods, 227 (2022), Cambridge University Press · Zbl 1502.14002 · doi:10.1017/9781009019729
[17] Kirby, Robion C.; Siebenmann, Laurence C., On the triangulation of manifolds and the Hauptvermutung, Bull. Am. Math. Soc., 75, 742-749 (1969) · Zbl 0189.54701 · doi:10.1090/S0002-9904-1969-12271-8
[18] Kontsevich, Maxim; Soibelman, Yan, Conférence Moshé Flato 1999, Vol. I (Dijon), 21, Deformations of algebras over operads and the Deligne conjecture, 255-307 (2000), Kluwer Academic Publishers · Zbl 0972.18005
[19] Kontsevich, Maxim; Zagier, Don, Mathematics unlimited—2001 and beyond, Periods, 771-808 (2001), Springer · Zbl 1039.11002 · doi:10.1007/978-3-642-56478-9_39
[20] Kuperberg, Greg, A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv., 71, 1, 70-97 (1996) · Zbl 0859.57017 · doi:10.1007/BF02566410
[21] Laczkovich, Miklós, Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem, J. Reine Angew. Math., 404, 77-117 (1990) · Zbl 0748.51017
[22] Larsen, Michael; Lunts, Valery A., Rationality of motivic zeta function and cut-and-paste problem (2014)
[23] Liu, Qing; Sebag, Julien, The Grothendieck ring of varieties and piecewise isomorphisms, Math. Z., 265, 2, 321-342 (2010) · Zbl 1195.14003
[24] Milnor, John, Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., 74, 575-590 (1961) · Zbl 0102.38103 · doi:10.2307/1970299
[25] Moser, Jürgen, Trans. Amer. Math. Soc, Trans. Am. Math. Soc., 120, 286-294 (1965) · Zbl 0141.19407
[26] Müller-Stach, Stefan, What is ...a period?, Notices Am. Math. Soc., 61, 8, 898-899 (2014) · Zbl 1338.11063 · doi:10.1090/noti1159
[27] Ohmoto, Toru; Shiota, Masahiro, \({C}^1\)-triangulations of semialgebraic sets, J. Topol., 10, 3, 765-775 (2017) · Zbl 1376.14060 · doi:10.1112/topo.12024
[28] Pak, Igor, Lectures on Discrete and Polyhedral Geometry (2015)
[29] Shiota, Masahiro; Yokoi, Masataka, Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Am. Math. Soc., 286, 2, 727-750 (1984) · Zbl 0527.57014 · doi:10.1090/S0002-9947-1984-0760983-2
[30] Spivak, Michael, A comprehensive introduction to differential geometry. Vol. I (1979), Publish or Perish Inc. · Zbl 0439.53004
[31] Sydler, Jean-Pierre, Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions, Comment. Math. Helv., 40, 43-80 (1965) · Zbl 0135.20906 · doi:10.1007/BF02564364
[32] Viu-Sos, Juan, A semi-canonical reduction for periods of Kontsevich-Zagier, Int. J. Number Theory, 17, 1, 147-174 (2021) · Zbl 1467.14040 · doi:10.1142/S179304212150007X
[33] Waldschmidt, Michel, Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux, 12, 2, 581-595 (1999) · Zbl 0976.11037 · doi:10.5802/jtnb.298
[34] Waldschmidt, Michel, Transcendence of periods: the state of the art, Pure Appl. Math. Q., 2, 2, 435-463 (2006) · Zbl 1220.11090 · doi:10.4310/PAMQ.2006.v2.n2.a3
[35] Waldschmidt, Michel, Raconte moi ...une période, Gaz. Math., Soc. Math. Fr., 143, 75-77 (2015) · Zbl 1358.11003
[36] Zakharevich, Inna, Perspectives on scissors congruence, Bull. Am. Math. Soc., 53, 2, 269-294 (2016) · Zbl 1346.52006 · doi:10.1090/bull/1527
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.