×

Positivity and exponential stability of coupled homogeneous time-delay differential-difference equations of degree one. (English) Zbl 1509.93031


MSC:

93C28 Positive control/observation systems
93D23 Exponential stability
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Chen, S.; Liu, X., Stability analysis of discrete-time coupled systems with delays, J. Frankl. Inst., 357, 14, 9942-9959 (2020) · Zbl 1448.93268 · doi:10.1016/j.jfranklin.2020.07.035
[2] De Iuliis, V.; Germani, A.; Manes, C., Internally positive representations and stability analysis of coupled differential-difference systems with time-varying delays, IEEE Trans. Autom. Control, 64, 6, 2514-2521 (2019) · Zbl 1482.93117 · doi:10.1109/TAC.2018.2866467
[3] Duan, Z.; Ghous, I.; Wang, B.; Shen, J., Necessary and sufficient stability criterion and stabilization for positive 2-D continuous-time systems with multiple delays, Asian J. Control, 21, 3, 1355-1366 (2019) · Zbl 1432.93279 · doi:10.1002/asjc.1811
[4] Farina, L.; Rinaldi, S., Positive Linear Systems: Theory and Applications (2000), New York: Wiley, New York · Zbl 0988.93002 · doi:10.1002/9781118033029
[5] Feng, Q.; Nguang, SK, Dissipative delay range analysis of coupled differential-difference delay systems with distributed delays, Syst. Control Lett., 116, 56-65 (2018) · Zbl 1417.93285 · doi:10.1016/j.sysconle.2018.04.008
[6] Feng, Q.; Nguang, SK; Seuret, A., Stability analysis of linear coupled differential-difference systems with general distributed delays, IEEE Trans. Autom. Control, 65, 3, 1356-1363 (2020) · Zbl 1533.93561 · doi:10.1109/TAC.2019.2928145
[7] Feyzmahdavian, HR; Charalambous, T.; Johansson, M., Asymptotic stability and decay rates of homogeneous positive systems with bounded and unbounded delays, SIAM J. Control Optim., 52, 4, 2623-2650 (2014) · Zbl 1320.34101 · doi:10.1137/130943340
[8] Feyzmahdavian, HR; Charalambous, T.; Johansson, M., Exponential stability of homogeneous positive systems of degree one with time-varying delays, IEEE Trans. Autom. Control, 59, 6, 1594-1599 (2014) · Zbl 1360.93596 · doi:10.1109/TAC.2013.2292739
[9] Fu, J.; Duan, Z.; Ghous, I., \( \ell_1\)-induced norm and controller synthesis for positive 2D systems with multiple delays, J. Frankl. Inst., 357, 12, 7904-7920 (2020) · Zbl 1447.93154 · doi:10.1016/j.jfranklin.2020.06.012
[10] Fu, J.; Duan, Z.; Xiang, Z., On mixed \(\ell_1/\ell_-\) fault detection observer design for positive 2D Roesser systems: necessary and sufficient conditions, J. Frankl. Inst. (2021) · Zbl 1480.93157 · doi:10.1016/j.jfranklin.2020.09.049
[11] Gu, K.; Liu, Y., Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations, Automatica, 45, 3, 798-804 (2009) · Zbl 1168.93384 · doi:10.1016/j.automatica.2008.10.024
[12] Gu, K.; Kharitonov, VL; Chen, J., Stability of Time-Delay Systems (2003), Boston: Birkhauser, Boston · Zbl 1039.34067 · doi:10.1007/978-1-4612-0039-0
[13] Gu, K.; Zhang, Y.; Xu, S., Small gain problem in coupled differential-difference equations, time-varying delays, and direct Lyapunov method, Int. J. Robust Nonlinear Control, 21, 4, 429-451 (2011) · Zbl 1213.93085 · doi:10.1002/rnc.1604
[14] Haddad, WM; Chellaboina, V.; Hui, Q., Nonnegative and Compartmental Dynamical Systems (2010), Princeton: Princeton University Press, Princeton · Zbl 1184.93001 · doi:10.1515/9781400832248
[15] Halanay, A.; Rasvan, V., Stability radii for some propagation models, IMA J. Math. Control I, 14, 1, 95-107 (1997) · Zbl 0873.93067 · doi:10.1093/imamci/14.1.95
[16] Hale, JK; Lunel, SM, Introduction to Functional Differential Equations (1993), New York: Springer, New York · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[17] Karafyllis, I.; Pepe, P.; Jiang, Z., Stability results for systems described by coupled retarded functional differential equations and functional difference equations, Nonlinear Anal. Theor., 71, 7, 3339-3362 (2009) · Zbl 1188.34097 · doi:10.1016/j.na.2009.01.244
[18] Khalil, HK, Nonlinear Systems (2002), Hoboken: Prentice Hall, Hoboken · Zbl 1003.34002
[19] Li, H., Discretized LKF method for stability of coupled differential-difference equations with multiple discrete and distributed delays, Int. J. Robust Nonlinear Control, 22, 8, 875-891 (2012) · Zbl 1274.93245 · doi:10.1002/rnc.1733
[20] Li, H.; Gu, K., Discretized Lyapunov-Krasovskii functional for coupled differential-difference equations with multiple delay channels, Automatica, 46, 5, 902-909 (2010) · Zbl 1191.93120 · doi:10.1016/j.automatica.2010.02.007
[21] Liu, X.; Yu, W.; Wang, L., Stability analysis for continuous-time positive systems with time-varying delays, IEEE Trans. Autom. Control, 55, 4, 1024-1028 (2010) · Zbl 1368.93600 · doi:10.1109/TAC.2010.2041982
[22] Liu, G.; Zhao, P.; Li, R., Stabilization of positive coupled differential-difference equations with unbounded time-varying delays, Optim. Control Appl. Methods, 42, 1, 81-95 (2021) · Zbl 1476.93137 · doi:10.1002/oca.2663
[23] Mason, O.; Verwoerd, M., Observations on the stability properties of cooperative systems, Syst. Control Lett., 58, 6, 461-467 (2009) · Zbl 1161.93021 · doi:10.1016/j.sysconle.2009.02.009
[24] Nam, PT; Luu, TH, State bounding for positive coupled differential-difference equations with bounded disturbances, IET Control Theory Appl., 13, 11, 1728-1735 (2019) · Zbl 1432.93189 · doi:10.1049/iet-cta.2018.5342
[25] Nam, PT; Phat, VN; Pathirana, PN; Trinh, H., Stability analysis of a general family of nonlinear positive discrete time-delay systems, Int. J. Control, 89, 7, 1303-1315 (2016) · Zbl 1353.93101 · doi:10.1080/00207179.2015.1128562
[26] Ngoc, PHA, Exponential stability of coupled linear delay time-varying differential-difference equations, IEEE Trans. Autom. Control, 63, 3, 843-848 (2018) · Zbl 1390.93666 · doi:10.1109/TAC.2017.2732064
[27] Ngoc, PHA, Stability of coupled functional differential-difference equations, Int. J. Control, 93, 8, 1920-1930 (2020) · Zbl 1453.93203 · doi:10.1080/00207179.2018.1537519
[28] S.I. Niculescu, Delay effects on stability, a robust control approach, in Lecture Notes in Control and Information Sciences, vol 269 (Springer, Heidelberg, 2001) · Zbl 0997.93001
[29] Pathirana, PN; Nam, PT; Trinh, HM, Stability of positive coupled differential-difference equations with unbounded time-varying delays, Automatica, 92, 259-263 (2018) · Zbl 1417.93269 · doi:10.1016/j.automatica.2018.03.055
[30] Pepe, P., On the asymptotic stability of coupled delay differential and continuous time difference equations, Automatica, 41, 1, 107-112 (2005) · Zbl 1155.93373
[31] Pepe, P.; Verriest, EI, On the stability of coupled delay differential and continuous time difference equations, IEEE Trans. Autom. Control, 48, 8, 1422-1427 (2003) · Zbl 1364.34104 · doi:10.1109/TAC.2003.815036
[32] Pepe, P.; Jiang, ZP; Fridman, E., A new Lyapunov-Krasovskii methodology for coupled delay differential and difference equations, Int. J. Control, 81, 1, 107-115 (2008) · Zbl 1194.39004 · doi:10.1080/00207170701383780
[33] Pepe, P.; Karafyllis, I.; Jiang, Z., On the Liapunov-Krasovskii methodology for the ISS of systems described by coupled delay differential and difference equations, Automatica, 44, 9, 2266-2273 (2008) · Zbl 1153.93029 · doi:10.1016/j.automatica.2008.01.010
[34] A. Rantzer, Distributed control of positive systems, in IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, p. 6608-6611 (2012)
[35] Sau, NH; Thuan, MV, New results on stability and \(L_{\infty }\)-gain analysis for positive linear differential-algebraic equations with unbounded time-varying delays, Int. J. Robust Nonlinear Control, 30, 7, 2889-2905 (2020) · Zbl 1465.93155 · doi:10.1002/rnc.4907
[36] Shen, J.; Chen, S., Stability and \({L_{\infty }}\)-gain analysis for a class of nonlinear positive systems with mixed delays, Int. J. Robust Nonlinear Control, 27, 1, 39-49 (2017) · Zbl 1353.93096 · doi:10.1002/rnc.3556
[37] Shen, J.; Zheng, WX, Positivity and stability of coupled differential-difference equations with time-varying delays, Automatica, 57, 123-127 (2015) · Zbl 1330.93200 · doi:10.1016/j.automatica.2015.04.007
[38] Smith, HL, Monotone Dynamical Systems: An Introduction to The Theory of Competitive and Cooperative Systems (1995), Providence: American Mathematical Society, Providence · Zbl 0821.34003
[39] Yang, H.; Zhang, Y., Finite-time stability of homogeneous impulsive positive systems of degree one, Circuits Syst. Signal Process., 38, 5323-5341 (2019) · doi:10.1007/s00034-019-01124-y
[40] Yang, H.; Zhang, Y., Impulsive control of continuous-time homogeneous positive delay systems of degree one, Int. J. Robust Nonlinear Control, 29, 11, 3341-3362 (2019) · Zbl 1426.93278 · doi:10.1002/rnc.4555
[41] Zhang, J.; Han, Z.; Huang, J., Stabilization of discrete-time positive switched systems, Circuits Syst. Signal Process., 32, 3, 1129-1145 (2013) · doi:10.1007/s00034-012-9510-2
[42] Zhang, N.; Sun, Y.; Zhao, P., State bounding for homogeneous positive systems of degree one with time-varying delay and exogenous input, J. Frankl. Inst., 354, 7, 2893-2904 (2017) · Zbl 1364.93361 · doi:10.1016/j.jfranklin.2017.01.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.