×

Dispersion relations of periodic quantum graphs associated with Archimedean tilings. II. (English) Zbl 1509.81598

Summary: We continue the work of a previous paper [Y.-C. Luo et al., J. Phys. A, Math. Theor. 52, No. 16, Article ID 165201, 22 p. (2019; Zbl 1509.81597)] to derive the dispersion relations of the periodic quantum graphs associated with the remaining 5 of the 11 Archimedean tilings, namely the truncated hexagonal tiling \((3, 12^2)\), rhombi-trihexagonal tiling \((3, 4, 6, 4)\), snub square tiling \((3^2, 4, 3, 6)\), snub trihexagonal tiling \((3^4, 6)\), and truncated trihexagonal tiling \((4, 6, 12)\). The computation is done with the help of the symbolic software Mathematica. With these explicit dispersion relations, we perform more analysis on the spectra.

MSC:

81U30 Dispersion theory, dispersion relations arising in quantum theory
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
05B45 Combinatorial aspects of tessellation and tiling problems

Citations:

Zbl 1509.81597

References:

[1] Amovilli C, Leys F E and March N H 2004 Electronic energy spectrum of two-dimensional solids and a chain of C atoms from a quantum network model J. Math. Chem.36 93-112 · Zbl 1052.81689 · doi:10.1023/B:JOMC.0000038775.67243.f2
[2] Berkolaiko G and Comech A 2018 Symmetry and Dirac points in graphene spectrum J. Spectral Theory8 1099-1147 · Zbl 1411.35092 · doi:10.4171/JST/223
[3] Berkolaiko G and Kuchment P 2012 Introduction to Quantum Graphs (Providence, RI: American Mathematical Society) · doi:10.1090/surv/186
[4] Do N T and Kuchment P 2013 Quantum graph spectra of a graphyne structure Nanoscale Syst. Math. Model. Theory Appl.2 107-23 · Zbl 1273.81067
[5] Eastham M 1973 The Spectral Theory of Periodic Differential Equations (Edinburgh: Scottish Academic Press) · Zbl 0287.34016
[6] Enyanshin A and Ivanovskii A 2011 Graphene alloptropes: stability, structural and electronic properties from DF-TB calculations Phys. Status Solidi (b) 248 1879-83 · doi:10.1002/pssb.201046583
[7] Fefferman C L and Weinstein M I 2012 Honeycomb lattice potentials and Dirac points J. Am. Math. Soc.25 1169-220 · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[8] Grünbaum B and Shephard G C 1987 Tilings and Patterns (New York: W H Freeman) · Zbl 0601.05001
[9] Korotyaev E and Lobanov I 2007 Schrödinger operators on zigzag nanotubes Ann. Henri Poincaré8 1151-76 · Zbl 1375.81098 · doi:10.1007/s00023-007-0331-y
[10] Kuchment P 1993 Floquet Theory for Partial Differential Equations (Basel: Birkhäuser) · Zbl 0789.35002 · doi:10.1007/978-3-0348-8573-7
[11] Kuchment P and Post O 2007 On the spectra of carbon nano-structures Commun. Math. Phys.275 805-26 · Zbl 1145.81032 · doi:10.1007/s00220-007-0316-1
[12] Law C K, Luo Y C and Wang T E 2019 Periodic spectrum of n-cubic quantum graphs (arXiv:1903.07332)
[13] Luo Y C, Jatulan E O and Law C K 2019 Dispersion relations of periodic quantum graphs associated with Archimedean tilings (I) J. Phys. A: Math. Theor.52 165201 · Zbl 1509.81597 · doi:10.1088/1751-8121/ab01b2
[14] Magnus W and Winkler S 1979 Hill’s Equation 2nd edn (New York: Dover)
[15] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV: Analysis of Operators (New York: Academic) · Zbl 0401.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.