×

Ping-pong quantum key distribution with trusted noise: non-Markovian advantage. (English) Zbl 1509.81419

Summary: The ping-pong protocol adapted for quantum key distribution is studied in the trusted quantum noise scenario, wherein the legitimate parties can add noise locally. For a well-studied attack model, we show how non-unital, quantum non-Markovianity of the added noise can improve the key rate. We also point out that this noise-induced advantage cannot be obtained by Alice and Bob by adding local classical noise to their post-measurement data.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography

References:

[1] Shenoy-Hejamadi, A.; Pathak, A.; Radhakrishna, S., Quantum cryptography: key distribution and beyond, Quanta, 6, 1, 1-47 (2017) · Zbl 1446.81018 · doi:10.12743/quanta.v6i1.57
[2] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems & Signal Processing, Bangalore, India, 10-12 December 1984, pp. 175-179 · Zbl 1306.81030
[3] Boström, K.; Felbinger, T., Deterministic secure direct communication using entanglement, Phys. Rev. Lett., 89, 18, 187902 (2002) · doi:10.1103/PhysRevLett.89.187902
[4] Lucamarini, M.; Mancini, S., Secure deterministic communication without entanglement, Phys. Rev. Lett., 94, 14, 140501 (2005) · doi:10.1103/PhysRevLett.94.140501
[5] Wójcik, A., Eavesdropping on the ping-pong quantum communication protocol, Phys. Rev. Lett., 90, 15, 157901 (2003) · doi:10.1103/PhysRevLett.90.157901
[6] Cai, Q-Y; Li, B-W, Improving the capacity of the boström-felbinger protocol, Phys. Rev. A, 69, 5, 054301 (2004) · doi:10.1103/PhysRevA.69.054301
[7] Cai, Q-Y, Eavesdropping on the two-way quantum communication protocols with invisible photons, Phys. Lett. A, 351, 23 (2006) · Zbl 1234.68031 · doi:10.1016/j.physleta.2005.10.050
[8] Zhang, Z.; Man, Z.; Li, Y., Improving wójcik’s eavesdropping attack on the ping-pong protocol, Phys. Lett. A, 333, 1, 46-50 (2004) · Zbl 1123.94371 · doi:10.1016/j.physleta.2004.10.025
[9] Boström, K.; Felbinger, T., On the security of the ping-pong protocol, Phys. Lett. A, 372, 22, 3953-3956 (2008) · Zbl 1220.81066 · doi:10.1016/j.physleta.2008.03.048
[10] Vasiliu, EV, Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits, Quantum Inf. Process., 10, 2, 189-202 (2011) · Zbl 1217.81045 · doi:10.1007/s11128-010-0188-8
[11] Zawadzki, P., Security of ping-pong protocol based on pairs of completely entangled qudits, Quantum Inf. Process., 11, 1-12 (2012) · Zbl 1277.94046 · doi:10.1007/s11128-011-0307-1
[12] Zawadzki, P., Improving security of the ping-pong protocol, Quantum Inf. Process., 12, 1, 149-155 (2012) · Zbl 1277.94045 · doi:10.1007/s11128-012-0363-1
[13] Li, J.; Song, DJ; Guo, XJ; JING, B., An improved security detection strategy based on w state in “ping-pong” protocol, Chin. J. Electron., 21, 117-120 (2012)
[14] Han, Y-G; Yin, Z-Q; Li, H-W; Chen, W.; Wang, S.; Guo, G-C; Han, Z-F, Security of modified ping-pong protocol in noisy and lossy channel, Sci. Rep., 4, 4936 (2014) · doi:10.1038/srep04936
[15] Banerjee, S., Open Quantum Systems (2018), Berlin: Springer, Berlin · Zbl 1412.81001
[16] Renner, R.; Gisin, N.; Kraus, B., Information-theoretic security proof for quantum-key-distribution protocols, Phys. Rev. A, 72, 012332 (2005) · doi:10.1103/PhysRevA.72.012332
[17] Shadman, Z.; Kampermann, H.; Meyer, T.; Bruß, D., Optimal eavesdropping on noisy states in quantum key distribution, Int. J. Quantum Inf., 07, 1, 297-306 (2009) · Zbl 1168.81320 · doi:10.1142/S0219749909004554
[18] Mertz, M.; Kampermann, H.; Shadman, Z.; Bruß, D., Quantum key distribution with finite resources: taking advantage of quantum noise, Phys. Rev. A, 87, 042312 (2013) · doi:10.1103/PhysRevA.87.042312
[19] Usenko, Vladyslav C., Filip, Radim: Trusted noise in continuous-variable quantum key distribution: a threat and a defense. Entropy 18(1), (2016) · Zbl 1197.81110
[20] García-Patrón, R.; Cerf, NJ, Continuous-variable quantum key distribution protocols over noisy channels, Phys. Rev. Lett., 102, 130501 (2009) · doi:10.1103/PhysRevLett.102.130501
[21] Rivas, A.; Huelga, SF; Plenio, MB, Quantum non-Markovianity: characterization, quantification and detection, Rep. Prog. Phys., 77, 9, 094001 (2014) · doi:10.1088/0034-4885/77/9/094001
[22] Pradeep Kumar, N.; Banerjee, S.; Srikanth, R.; Jagadish, V.; Petruccione, F., Non-Markovian evolution: a quantum walk perspective, Open Syst. Inf. Dyn., 25, 3, 1850014 (2018) · Zbl 1423.81047 · doi:10.1142/S1230161218500142
[23] Li, L.; Hall, MJW; Wiseman, HM, Concepts of quantum non-Markovianity: a hierarchy, Phys. Rep., 759, 1-51 (2018) · Zbl 1404.81150 · doi:10.1016/j.physrep.2018.07.001
[24] Shrikant, U, Srikanth, R., Banerjee, Subhashish: On a concept of quantum non-Markovianity weaker than cp-indivisibility. arXiv:1911.04162 · Zbl 1508.81917
[25] Pollock, FA; Rodríguez-Rosario, C.; Frauenheim, T.; Paternostro, M.; Modi, K., Operational Markov condition for quantum processes, Phys. Rev. Lett., 120, 040405 (2018) · doi:10.1103/PhysRevLett.120.040405
[26] Sharma, V.; Shrikant, U.; Srikanth, R., Decoherence can help quantum cryptographic security, Quantum Inf. Process., 17, 88, 207 (2018) · Zbl 1448.81292 · doi:10.1007/s11128-018-1974-y
[27] Thapliyal, K.; Pathak, A.; Banerjee, S., Quantum cryptography over non-Markovian channels, Quantum Inf. Process., 16, 5, 115 (2017) · Zbl 1373.81184 · doi:10.1007/s11128-017-1567-1
[28] Weiss, U., Quantum Dissipative Systems (2008), Singapore: World Scientific, Singapore · Zbl 1166.81005
[29] de Vega, I.; Alonso, D., Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys., 89, 015001 (2017) · doi:10.1103/RevModPhys.89.015001
[30] Rossi, MAC; Cattaneo, M.; Paris, MGA; Maniscalco, S., Non-Markovianity is not a resource for quantum spatial search on a star graph subject to generalized percolation, Quantum Measurements Quantum Metrol., 5, 1, 40-49 (2018) · doi:10.1515/qmetro-2018-0003
[31] Bruß, D., Optimal eavesdropping in quantum cryptography with six states, Phys. Rev. Lett., 81, 3018-3021 (1998) · doi:10.1103/PhysRevLett.81.3018
[32] Bruß, D.; Lütkenhaus, N., Quantum key distribution: from principles to practicalities, Appl. Algebra Eng. Commun. Comput., 10, 4, 383-399 (2000) · Zbl 0989.81008
[33] Srikanth, R.; Banerjee, S., Squeezed generalized amplitude damping channel, Phys. Rev. A, 77, 1, 012318 (2008) · doi:10.1103/PhysRevA.77.012318
[34] Breuer, H-P; Laine, E-M; Piilo, J.; Vacchini, B., Colloquium: non-Markovian dynamics in open quantum systems, Rev. Modern Phys., 88, 2, 021002 (2016) · doi:10.1103/RevModPhys.88.021002
[35] Passos, MHM; Concha Obando, P.; Balthazar, WF; Paula, FM; Huguenin, JAO; Sarandy, MS, Non-Markovianity through quantum coherence in an all-optical setup, Opt. Lett., 44, 10, 2478-2481 (2019) · doi:10.1364/OL.44.002478
[36] Salles, A.; de Melo, F.; Almeida, MP; Hor-Meyll, M.; Walborn, SP; Souto Ribeiro, PH; Davidovich, L., Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment, Phys. Rev. A, 78, 022322 (2008) · doi:10.1103/PhysRevA.78.022322
[37] Fanchini, FF; Karpat, G.; Çakmak, B.; Castelano, LK; Aguilar, GH; Jiménez Farías, O.; Walborn, SP; Souto Ribeiro, PH; De Oliveira, MC, Non-Markovianity through accessible information Non-Markovianity through accessible information, Phys. Rev. Lett., 112, 21, 210402 (2014) · doi:10.1103/PhysRevLett.112.210402
[38] Yugra, Y.; De Zela, F.; Cuevas, Á., Coherence-based measurement of non-Markovian dynamics in an open quantum system, Phys. Rev. A, 101, 1, 013822 (2020) · doi:10.1103/PhysRevA.101.013822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.