×

Quantum algorithm for preparing the ground state of a physical system through multi-step quantum resonant transitions. (English) Zbl 1509.81306

Summary: We present a quantum algorithm for preparing the ground state of a physical system by using a multi-step quantum resonant transition (QRT) method. We construct a sequence of intermediate Hamiltonians to reach the system Hamiltonian, and then, starting from the ground state of an initial Hamiltonian, the system is sequentially evolved to the ground states of the intermediate Hamiltonians step by step using the QRT method, finally reaching the ground state of the system Hamiltonian. The algorithm can be run efficiently if the overlap between the ground states of any two adjacent Hamiltonians and the energy gap between the ground state and the first excited state of each Hamiltonian are not exponentially small. By using this algorithm, preparing the ground state of a system is transformed to simulating the time evolution of a sequence of time-independent Hamiltonians. This algorithm can also be used for calculating energy eigenvalues of a physical system.

MSC:

81P68 Quantum computation
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Lloyd, S., Universal quantum simulators, Science, 273, 1073-78 (1996) · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[2] Abrams, DS; Lloyd, S., Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett., 83, 5162 (1999) · doi:10.1103/PhysRevLett.83.5162
[3] Poulin, D., Quantum algorithm for spectral measurement with lower gate count, Phys. Rev. Lett., 121, 010501 (2018) · doi:10.1103/PhysRevLett.121.010501
[4] Cubitt, T.; Montanaro, A., Complexity classification of local Hamiltonian problems, SIAM J. Comput., 45, 268 (2016) · Zbl 1353.68095 · doi:10.1137/140998287
[5] Kempe, J.; Kitaev, A.; Regev, O., The complexity of the local Hamiltonian problem, SIAM J. Comput., 35, 1070 (2006) · Zbl 1102.81032 · doi:10.1137/S0097539704445226
[6] Schuch, N.; Verstraete, F., Computational complexity of interacting electrons and fundamental limitations of density functional theory, Nat. Phys., 5, 732 (2009) · doi:10.1038/nphys1370
[7] Whitfield, JD; Love, PJ; Aspuru-Guzik, A., Computational complexity in electronic structure, Phys. Chem. Chem. Phys., 15, 397 (2013) · doi:10.1039/C2CP42695A
[8] Kitaev, A.Y.: Quantum measurements and the Abelian Stabilizer Problem, e-print quant-ph/9511026 (1995)
[9] Aspuru-Guzik, A.; Dutoi, AD; Love, PJ; Head-Gordon, M., Simulated quantum computation of molecular energies, Science, 309, 1704 (2005) · doi:10.1126/science.1113479
[10] Yung, M-H, From transistor to trapped-ion computers for quantum chemistry, Sci. Rep., 4, 3589 (2014) · doi:10.1038/srep03589
[11] Peruzzo, A., A variational eigenvalue solver on a photonic quantum processor, Nat. Commun., 5, 4213 (2014) · doi:10.1038/ncomms5213
[12] McClean, J.; Romero, J.; Babbush, R.; Aspuru-Guzik, A., The theory of variational hybrid quantum-classical algorithms, New J. Phys., 18, 023023 (2016) · Zbl 1456.81149 · doi:10.1088/1367-2630/18/2/023023
[13] O’Malley, PJJ, Scalable quantum simulation of molecular energies, Phys. Rev. X, 6, 031007 (2016)
[14] Motta, M., Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, Nat. Phys., 16, 205 (2019) · doi:10.1038/s41567-019-0704-4
[15] Farhi, E., Goldstone, J., Gutmann, S.: A Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability, e-print quant-ph/0007071v1 (2000) · Zbl 1213.68284
[16] Farhi, E., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 472 (2001) · Zbl 1226.81046 · doi:10.1126/science.1057726
[17] Born, M.; Fock, V., Beweis des Adiabatensatzes, Zeit. Phys., 51, 165 (1928) · JFM 54.0994.03 · doi:10.1007/BF01343193
[18] Albash, T.; Lidar, DA, Adiabatic quantum computation, Rev. Mod. Phys., 90, 015002 (2018) · doi:10.1103/RevModPhys.90.015002
[19] Wang, H.; Ashhab, S.; Nori, F., Quantum algorithm for obtaining the energy spectrum of a physical system, Phys. Rev. A, 85, 062304 (2012) · doi:10.1103/PhysRevA.85.062304
[20] Wang, H., Quantum algorithm for obtaining the eigenstates of a physical system, Phys. Rev. A, 93, 052334 (2016) · doi:10.1103/PhysRevA.93.052334
[21] Li, Z., Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian, Phys. Rev. Lett., 122, 090504 (2019) · doi:10.1103/PhysRevLett.122.090504
[22] Bravyi, S., Simulation of many-body hamiltonians using perturbation theory with bounded-strength interactions, Phys. Rev. Lett., 101, 070503 (2008) · doi:10.1103/PhysRevLett.101.070503
[23] Biamonte, JD; Love, P., Realizable hamiltonians for universal adiabatic quantum computers, Phys. Rev. A, 78, 012352 (2008) · Zbl 1255.81101 · doi:10.1103/PhysRevA.78.012352
[24] Jordan, SP; Farhi, E., Perturbative gadgets at arbitrary orders, Phys. Rev. A, 77, 062329 (2008) · doi:10.1103/PhysRevA.77.062329
[25] Cao, Y.; Babbush, R.; Biamonte, J.; Kais, S., Hamiltonian gadgets with reduced resource requirements, Phys. Rev. A, 91, 012315 (2015) · doi:10.1103/PhysRevA.91.012315
[26] Trotter, HF, On the product of semi-groups of operators, Proc. Am. Math. Soc., 10, 545 (1959) · Zbl 0099.10401 · doi:10.1090/S0002-9939-1959-0108732-6
[27] Childs, A.M.: Quantum Information Processing in Continuous Time. Ph.D. thesis, Massachusetts Institute of Technology (2004)
[28] Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, New York, pp. 20-29 (2003) · Zbl 1192.81048
[29] Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A, 146, 319 (1990) · doi:10.1016/0375-9601(90)90962-N
[30] Berry, DW; Ahokas, G.; Cleve, R.; Sanders, BC, Efficient quantum algorithms for simulating sparse Hamiltonians, Commun. Math. Phys., 270, 359 (2007) · Zbl 1115.81011 · doi:10.1007/s00220-006-0150-x
[31] Childs, AM; Maslov, D.; Nam, Y.; Ross, NJ; Su, Y., Toward the first quantum simulation with quantum speedup, Proc. Natl. Acad. Sci., 115, 9456 (2018) · Zbl 1415.68107 · doi:10.1073/pnas.1801723115
[32] Childs, A. M., Su, Y., Tran, M. C., Wiebe, N and Zhu, S.: A Theory of Trotter Error. arXiv:1912.08854v2 [quant-ph] (2019)
[33] Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400 (1991) · Zbl 0735.47009
[34] Childs, AM; Wiebe, N., Hamiltonian simulation using linear combinations of unitary operations, Quant. Inf. Comput., 12, 901 (2012) · Zbl 1263.81112
[35] Berry, DW; Childs, AM; Cleve, R.; Kothari, R.; Somma, RD, Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett., 114, 090502 (2015) · doi:10.1103/PhysRevLett.114.090502
[36] Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, New York, pp. 283-292 (2014) · Zbl 1315.68133
[37] Low, GH; Chuang, IL, Optimal Hamiltonian simulation by quantum signal processing, Phys. Rev. Lett., 118, 010501 (2017) · doi:10.1103/PhysRevLett.118.010501
[38] Low, GH; Chuang, IL, Hamiltonian simulation by qubitization, Quantum, 3, 163 (2019) · doi:10.22331/q-2019-07-12-163
[39] Su, Y., Framework for Hamiltonian simulation and beyond: standard-form encoding, qubitization, and quantum signal processing, Quantum, 3, 21 (2019)
[40] Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019), pp. 193-204 · Zbl 1433.68147
[41] McArdle, S., et. al: Quantum Computational Chemistry. arXiv:1808.10402v3 [quant-ph] (2018)
[42] Kohn, W., Nobel lecture: electronic structure of matterwave functions and density functionals, Rev. Mod. Phys., 71, 1253 (1999) · doi:10.1103/RevModPhys.71.1253
[43] Schmidt, MW; Gordon, MS, The construction and interpretation of MCSCF wavefunctions, Annu. Rev. Phys. Chem., 49, 233 (1998) · doi:10.1146/annurev.physchem.49.1.233
[44] Wang, H.; Kais, S.; Aspuru-Guzik, A.; Hoffmann, MR, Quantum algorithm for obtaining the energy spectrum of molecular systems, Phys. Chem. Chem. Phys., 10, 5388 (2008) · doi:10.1039/b804804e
[45] Levine, IN, Quantum Chemistry (2000), Upper Saddle River: Prentice Hall Inc, Upper Saddle River
[46] Szabo, A.; Ostlund, NS, Modern Quantum Chemistry: Introduction to Advanced Electronic structure Theory (1996), New York: Dover Publications Inc, New York
[47] Monz, T., Realization of a scalable Shor algorithm, Science, 351, 1068 (2016) · Zbl 1355.81060 · doi:10.1126/science.aad9480
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.