×

GHZ states as near-optimal states for reference frame alignment. (English) Zbl 1509.81222

Summary: Let two coordinate systems, in possession of Alice and Bob, be related to each other by an unknown rotation \(R\in\mathrm{SO}(3)\). Alice is to send identical states \(|\psi_0\rangle\) to Bob who will make measurements on the received state and will determine the rotation \(R\). The task of Bob is to estimate these parameters of the rotation \(R\) by the best possible measurements. Based on the quantum Fisher information, we show that Greenberger-Horne-Zeilinger (GHZ) states are near optimal states for this task. We show concrete measurements which will allow Bob to determine the rotation \(R\). This shows that GHZ states, as superposition of macroscopically distinct states, are useful in yet another context in quantum information, namely in communicating the information of a whole coordinate system between two parties where no prior information is available on the relative orientation of the two frames.

MSC:

81P50 Quantum state estimation, approximate cloning
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Giovannetti, V.; Lloyd, S.; Maccone, L., Quantum metrology, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.010401
[2] D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87(27), 270404 (2001)
[3] Paris, MGA, Quantum estimation for quantum technology, Int. J. Quantum Inf., 7, supp01, 125-137 (2009) · Zbl 1162.81351 · doi:10.1142/S0219749909004839
[4] D’Ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Quantum tomography. Adv. Imaging Electron. Phys. 128, 206-309 (2003)
[5] Gisin, N.; Popescu, S., Spin flips and quantum information for antiparallel spins, Phys. Rev. Lett., 83, 432 (1999) · doi:10.1103/PhysRevLett.83.432
[6] Massar, S.; Popescu, S., Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett., 74, 1259 (1995) · Zbl 1020.81517 · doi:10.1103/PhysRevLett.74.1259
[7] Peres, A.; Scudo, PF, Entangled quantum states as direction indicators, Phys. Rev. Lett., 86, 4160 (2001) · doi:10.1103/PhysRevLett.86.4160
[8] Peres, A.; Scudo, PF, Transmission of a cartesian frame by a quantum system, Phys. Rev. Lett., 87, 167901 (2001) · doi:10.1103/PhysRevLett.87.167901
[9] Rezazadeh, F.; Mani, A.; Karimipour, V., Secure alignment of coordinate systems by using quantum correlation, Phys. Rev. A, 96, 2, 022310 (2017) · doi:10.1103/PhysRevA.96.022310
[10] Bagan, E.; Baig, M.; Munõz Tapia, R., Aligning reference frames with quantum states, Phys. Rev. Lett., 87, 257903 (2001) · doi:10.1103/PhysRevLett.87.257903
[11] Chiribella, G., D’Ariano, G.M., Perinotti, P., Sacchi, M.E.: Efficient use of quantum resources for the transmission of a reference frame. Phys. Rev. Lett. 93, 180503 (2004)
[12] Kolenderski, P.; Demkowicz-Dobrzanski, R., Optimal state for keeping reference frames aligned and the platonic solids, Phys. Rev. A, 78, 052333 (2008) · doi:10.1103/PhysRevA.78.052333
[13] Goldberg, AZ; James, DFV, Quantum-limited Euler angle measurements using anticoherent states, Phys. Rev. A, 98, 032113 (2018) · doi:10.1103/PhysRevA.98.032113
[14] Bartlett, SD; Rudolph, T.; Spekkens, RW, Classical and quantum communication without a shared reference frame, Phys. Rev. Lett., 91, 027901 (2003) · doi:10.1103/PhysRevLett.91.027901
[15] Bartlett, SD; Rudolph, T.; Spekkens, RW; Turner, PS, Quantum communication using a bounded-size quantum reference frame, New J. Phys., 11, 063013 (2009) · doi:10.1088/1367-2630/11/6/063013
[16] Rezazadeh, F.; Mani, A.; Karimipour, V., Quantum key distribution with no shared reference frame, Quantum Inf. Process., 19, 54 (2020) · Zbl 1508.81732 · doi:10.1007/s11128-019-2508-y
[17] Beheshti, A.; Raeisi, S.; Karimipour, V., Entanglement-assisted communication in the absence of shared reference frame, Phys. Rev. A, 99, 4, 042330 (2019) · doi:10.1103/PhysRevA.99.042330
[18] Ahmadi, M.; Smith, ARH; Dragan, A., Communication between inertial observers with partially correlated reference frames, Phys. Rev. A, 92, 062319 (2015) · doi:10.1103/PhysRevA.92.062319
[19] Safranek, D.; Ahmadi, M.; Fuentes, I., Quantum parameter estimation with imperfect reference frames, New J. Phys., 17, 033012 (2015) · Zbl 1452.81057 · doi:10.1088/1367-2630/17/3/033012
[20] Ahmadi, M.; Jennings, D.; Rudolph, T., The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry, New J. Phys., 15, 1, 013057 (2013) · Zbl 1451.81019 · doi:10.1088/1367-2630/15/1/013057
[21] Marvian, I.; Spekkens, RW, The asymmetry properties of pure quantum states, Phys. Rev. A, 90, 014102 (2014) · doi:10.1103/PhysRevA.90.014102
[22] Marvian, I.; Spekkens, RW, A no-broadcasting theorem for quantum asymmetry and coherence and a trade-off relation for approximate broadcasting, Phys. Rev. Lett., 123, 020404 (2019) · doi:10.1103/PhysRevLett.123.020404
[23] Marvian, I.; Spekkens, RW, How to quantify coherence: distinguishing speakable and unspeakable notions, Phys. Rev. A, 94, 052324 (2016) · doi:10.1103/PhysRevA.94.052324
[24] Zimba, J.: “Anticoherent” Spin states via the majorana representation. Electron. J. Theor. Phys. 3, 143 (2006) · Zbl 1135.81347
[25] Majorana, E., Oriented atoms in a variable magnetic field, Nuovo Cimento, 9, 43 (1932) · Zbl 0004.18505 · doi:10.1007/BF02960953
[26] Erhard, M.; Malik, M.; Krenn, M.; Zeilinger, A., Experimental Greenberger Horne Zeilinger entanglement beyond qubits, Nat. Photonics, 12, 759-764 (2018) · doi:10.1038/s41566-018-0257-6
[27] Bouwmeester, D.; Pan, J-W; Daniell, M.; Weinfurter, H.; Zeilinger, A., Observation of three-photon Greenberger Horne Zeilinger entanglement, Phys. Rev. Lett., 82, 1345 (1999) · Zbl 1031.81510 · doi:10.1103/PhysRevLett.82.1345
[28] Jian-Wei, P.; Bouwmeester, D.; Daniell, M.; Weinfurter, H.; Zeilinger, A., Experimental test of quantum nonlocality in three-photon Greenberger Horne Zeilinger entanglement, Nature, 403, 515 (2000) · doi:10.1038/35000514
[29] Wang, X-L; Chen, L-K; Li, W.; Huang, H-L; Liu, C.; Chen, C.; Luo, Y-H; Su, Z-E; Wu, D.; Li, Z-D, Experimental ten-photon entanglement, Phys. Rev. Lett., 117, 210502 (2016) · doi:10.1103/PhysRevLett.117.210502
[30] Cramér, H., Mathematical Methods of Statistics (1946), Princeton: Princeton University Press, Princeton · Zbl 0063.01014
[31] Rao, CR, Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37, 81-89 (1945) · Zbl 0063.06420
[32] Helstrom, CW, Quantum Detection and Estimation Theory (1976), Cambridge: Academic Press, Cambridge · Zbl 1332.81011
[33] Petz, D., Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics (2008), Berlin: Springer, Berlin · Zbl 1145.81002
[34] Matsumoto, K., A new approach to the Cramer-Rao type bound of the pure state model, J. Phys. A, 35, 3111 (2002) · Zbl 1045.81012 · doi:10.1088/0305-4470/35/13/307
[35] Gill, RD; Levit, BY, Applications of the van Trees inequality: a Bayesian Cramér-Rao bound, Bernoulli, 1, 1-2, 59-79 (1995) · Zbl 0830.62035 · doi:10.2307/3318681
[36] Gill, RD; Massar, S., State estimation for large ensembles, Phys. Rev. A, 61, 042312 (2000) · doi:10.1103/PhysRevA.61.042312
[37] Nordström, K., Convexity of the inverse and Moore-Penrose inverse, Linear Algebra Appl., 434, 6, 1489-1512 (2011) · Zbl 1215.15004 · doi:10.1016/j.laa.2010.11.023
[38] Liu, J.; Jing, X.; Wang, X., Quantum metrology with unitary parametrization processes, Sci. Rep., 5, 8565 (2015) · doi:10.1038/srep08565
[39] Liu, J.; Xiong, H-N; Song, F.; Wang, X., Fidelity susceptibility and quantum Fisher information for density operators with arbitrary ranks, Phyica A, 410, 167 (2014) · Zbl 1395.81071 · doi:10.1016/j.physa.2014.05.028
[40] Emamipanah, S.; Asoudeh, M.; Karimipour, V., Entangled states as robust and re-usable carriers of information, Quantum Inf. Process., 19, 357 (2020) · Zbl 1509.81070 · doi:10.1007/s11128-020-02822-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.