×

Adaptive quantum state tomography with iterative particle filtering. (English) Zbl 1509.81043

Summary: Several Bayesian estimation-based heuristics have been developed to perform quantum state tomography (QST). Their ability to quantify uncertainties using region estimators and include a priori knowledge of the experimentalists makes this family of methods an attractive choice for QST. However, specialized techniques for pure states do not work well for mixed states and vice versa. In this paper, we present an adaptive particle filter (PF)-based QST protocol which improves the scaling of fidelity compared to nonadaptive Bayesian schemes for arbitrary multi-qubit states. This is due to the protocol’s unabating perseverance to find the states’ diagonal bases and more systematic handling of enduring problems in popular PF methods relating to the subjectivity of informative priors and the invalidity of particles produced by resamplers. Numerical examples and implementation on IBM quantum devices demonstrate improved performance for arbitrary quantum states and the application readiness of our proposed scheme.

MSC:

81P18 Quantum state tomography, quantum state discrimination

Software:

QISKit; QuTiP

References:

[1] Raynal, P.; Lü, X.; Englert, BG, Mutually unbiased bases in six dimensions: The four most distant bases, Phys. Rev. A, 83, 6, 062303 (2011) · doi:10.1103/PhysRevA.83.062303
[2] Yan, F.; Yang, M.; Cao, ZL, Optimal reconstruction of the states in qutrit systems, Phys. Rev. A, 82, 4, 044102 (2010) · doi:10.1103/PhysRevA.82.044102
[3] Adamson, R.; Steinberg, AM, Improving quantum state estimation with mutually unbiased bases, Phys. Rev. Lett., 105, 3, 030406 (2010) · doi:10.1103/PhysRevLett.105.030406
[4] Huszár, F.; Houlsby, NM, Adaptive Bayesian quantum tomography, Phys. Rev. A, 85, 5, 052120 (2012) · doi:10.1103/PhysRevA.85.052120
[5] Pereira, L.; Zambrano, L.; Cortés-Vega, J.; Niklitschek, S.; Delgado, A., Adaptive quantum tomography in high dimensions, Phys. Rev. A, 98, 1, 012339 (2018) · doi:10.1103/PhysRevA.98.012339
[6] Mahler, DH; Rozema, LA; Darabi, A.; Ferrie, C.; Blume-Kohout, R.; Steinberg, A., Adaptive quantum state tomography improves accuracy quadratically, Phys. Rev. Lett., 111, 18, 183601 (2013) · doi:10.1103/PhysRevLett.111.183601
[7] Hou, Z., Zhu, H., Xiang, G.Y., Li, C.F., Guo, G.C.: Achieving quantum precision limit in adaptive qubit state tomography. npj Quantum Inf. 2(1) (2016) 1-5
[8] Blume-Kohout, R., Optimal, reliable estimation of quantum states, New J. Phys, 12, 4, 043034 (2010) · Zbl 1375.81065 · doi:10.1088/1367-2630/12/4/043034
[9] Lambert, B.: A Student’s Guide to Bayesian Statistics. SAGE, London (2018)
[10] Ferrie, C., High posterior density ellipsoids of quantum states, New J. Phys, 16, 2, 023006 (2014) · Zbl 1451.81051 · doi:10.1088/1367-2630/16/2/023006
[11] Ferrie, C., Self-guided quantum tomography, Phys. Rev. Lett., 113, 19, 190404 (2014) · doi:10.1103/PhysRevLett.113.190404
[12] Granade, C.; Ferrie, C.; Flammia, ST, Practical adaptive quantum tomography, New J. Phys, 19, 11, 113017 (2017) · Zbl 1516.81026 · doi:10.1088/1367-2630/aa8fe6
[13] Abraham, H., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019)
[14] Munro, W.; James, D.; White, A.; Kwiat, P., Measurement of qubits, Phys. Rev. A, 64, 030302 (2001) · doi:10.1103/PhysRevA.64.030302
[15] Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. 10,(2000)
[16] Liu, J.; West, M., Combined parameter and state estimation in simulation-based filtering (2001), Berlin: Springer, Berlin · Zbl 1056.93583 · doi:10.1007/978-1-4757-3437-9_10
[17] Granadeand, C.; Combes, J.; Cory, D., Practical Bayesian tomography, New J. Phys, 18, 3, 033024 (2016) · Zbl 1456.81040 · doi:10.1088/1367-2630/18/3/033024
[18] Gonçalves, DS; Gomes-Ruggiero, MA; Lavor, C.; Jiménez, OF; Ribeiro, PS, Local solutions of maximum likelihood estimation in quantum state tomography, Quantum Info. Comput., 12, 9-10, 775-790 (2012) · Zbl 1263.81101
[19] Bickel, P., Li, B., Bengtsson, T., et al.: Sharp failure rates for the bootstrap particle filter in high dimensions. (2008)
[20] Granade, C.; Ferrie, C.; Hincks, I.; Casagrande, S.; Alexander, T.; Gross, J.; Kononenko, M.; Sanders, Y., Qinfer: Statistical inference software for quantum applications, Quantum, 1, 5 (2017) · doi:10.22331/q-2017-04-25-5
[21] Johansson, JR; Nation, PD; Nori, F., QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun, 183, 8, 1760-1772 (2012) · doi:10.1016/j.cpc.2012.02.021
[22] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. 10th anniversary edn. Cambridge University Press, New York (2010) · Zbl 1288.81001
[23] Granade, CE; Ferrie, C.; Wiebe, N.; Cory, DG, Robust online Hamiltonian learning, New J. Phys, 14, 10, 103013 (2012) · Zbl 1448.68373 · doi:10.1088/1367-2630/14/10/103013
[24] IBM Quantum. https://quantum-computing.ibm.com/, 2021
[25] Struchalin, GI; Pogorelov, IA; Straupe, SS; Kravtsov, KS; Radchenko, IV; Kulik, SP, Experimental adaptive quantum tomography of two-qubit states, Phys. Rev. A, 93, 1, 012103 (2016) · doi:10.1103/PhysRevA.93.012103
[26] Granade, C., Ferrie, C., Flammia, S.: Practical adaptive quantum tomography: Supplementary material (Apr 2016)
[27] Gill, DR; Massar, S., State estimation for large ensembles, Phys. Rev. A, 61, 042312 (2000) · doi:10.1103/PhysRevA.61.042312
[28] Zhu, H.: Quantum State Estimation and Symmetric Informationally Complete POMs. PhD Thesis, National University of Singapore (2012)
[29] Rambach, M.; Qaryan, M.; Kewming, M.; Ferrie, C.; White, AG; Romero, J., Robust and Efficient High-Dimensional Quantum State Tomography, Phys. Rev. Lett., 126, 10, 100402 (2021) · doi:10.1103/PhysRevLett.126.100402
[30] Chapman, RJ; Ferrie, C.; Peruzzo, A., Experimental demonstration of self-guided quantum tomography, Phys. Rev. Lett., 117, 4, 040402 (2016) · doi:10.1103/PhysRevLett.117.040402
[31] Zulehner, A., Paler, A., Wille, R. (2018): An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst .38(7), 1226-1236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.