×

Finite-size evaporating droplets in weakly compressible homogeneous shear turbulence. (English) Zbl 1509.76096

J. Fluid Mech. 934, Paper No. A15, 41 p. (2022); corrigendum ibid. 935, Paper No. E2, 1 p. (2022).
Summary: We perform interface-resolved simulations of finite-size evaporating droplets in weakly compressible homogeneous shear turbulence. The study is conducted by varying three dimensionless physical parameters: the initial gas temperature over the critical temperature \(T_{g, 0}/T_c\), the initial droplet diameter over the Kolmogorov scale \(d_0/\eta\) and the surface tension, i.e. the shear-based Weber number, \(We_{\mathcal{S}}\). For the smallest \(We_{\mathcal{S}}\), we first discuss the impact on the evaporation rate of the three thermodynamic models employed to evaluate the gas thermophysical properties: a constant property model and two variable-properties approaches where either the gas density or all the gas properties are allowed to vary. Taking this last approach as reference, the model assuming constant gas properties and evaluated with the ‘1/3’ rule is shown to predict the evaporation rate better than the model where the only variable property is the gas density. Moreover, we observe that the well-known Frössling/Ranz-Marshall correlation underpredicts the Sherwood number at low temperatures, \(T_{g, 0}/T_c=0.75\). Next, we show that the ratio between the actual evaporation rate in turbulence and the one computed in stagnant conditions is always much higher than one for weakly deformable droplets: it decreases with \(T_{g, 0}/T_c\) without approaching unity at the highest \(T_{g, 0}/T_c\) considered. This suggests an evaporation enhancement due to turbulence also in conditions typical of combustion applications. Finally, we examine the overall evaporation rate and the local interfacial mass flux at higher \(We_{\mathcal{S}}\), showing a positive correlation between evaporation rate and interfacial curvature, especially at the lowest \(T_{g, 0}/T_c\).

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F05 Isotropic turbulence; homogeneous turbulence
76F10 Shear flows and turbulence
76F50 Compressibility effects in turbulence
76M20 Finite difference methods applied to problems in fluid mechanics
80A22 Stefan problems, phase changes, etc.

Software:

CaNS; HOLOMAC

References:

[1] Abramzon, B. & Sirignano, W.A.1989Droplet vaporization model for spray combustion calculations. Intl J. Heat Mass Transfer32 (9), 1605-1618.
[2] Albernaz, D.L., Do-Quang, M., Hermanson, J.C. & Amberg, G.2017Droplet deformation and heat transfer in isotropic turbulence. J. Fluid Mech.820, 61-85. · Zbl 1383.76176
[3] Balachandar, S., Zaleski, S., Soldati, A., Ahmadi, G. & Bourouiba, L.2020Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Intl J. Multiphase Flow132, 103439.
[4] Birouk, M. & Gökalp, I.2006Current status of droplet evaporation in turbulent flows. Prog. Energy Combust. Sci.32 (4), 408-423.
[5] Bourouiba, L.2020Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of covid-19. JAMA323 (18), 1837-1838.
[6] Bourouiba, L.2021The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech.53, 473-508. · Zbl 1459.76189
[7] Bukhvostova, A., Russo, E., Kuerten, J.G.M. & Geurts, B.J.2014Comparison of DNS of compressible and incompressible turbulent droplet-laden heated channel flow with phase transition. Intl J. Multiphase Flow63, 68-81.
[8] Chong, K.L., Ng, C.S., Hori, N., Yang, R., Verzicco, R. & Lohse, D.2021Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys. Rev. Lett.126 (3), 034502.
[9] Costa, P.2018A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. Comput. Math. Appl.76 (8), 1853-1862. · Zbl 1442.65156
[10] Dalla Barba, F., Scapin, N., Demou, A.D., Rosti, M.E., Picano, F. & Brandt, L.2021An interface capturing method for liquid-gas flows at low-mach number. Comput. Fluids216, 104789. · Zbl 1521.76522
[11] Dauxois, T., Peacock, T., Bauer, P., Caulfield, C.-C.P., Cenedese, C., Gorlé, C., Haller, G., Ivey, G.N., Linden, P.F., Meiburg, E., et al.2021Confronting grand challenges in environmental fluid mechanics. Phys. Rev. Fluids6 (2), 020501.
[12] De Rivas, A. & Villermaux, E.2016Dense spray evaporation as a mixing process. Phys. Rev. Fluids1 (1), 014201.
[13] Demou, A.D., Frantzis, C. & Grigoriadis, D.G.E.2019A low-mach methodology for efficient direct numerical simulations of variable property thermally driven flows. Intl J. Heat Mass Transfer132, 539-549.
[14] Dodd, M.S. & Ferrante, A.2014A fast pressure-correction method for incompressible two-fluid flows. J. Comput. Phys.273, 416-434. · Zbl 1351.76161
[15] Dodd, M.S., Mohaddes, D., Ferrante, A. & Ihme, M.2021Analysis of droplet evaporation in isotropic turbulence through droplet-resolved dns. Intl J. Heat Mass Transfer172, 121157.
[16] Elghobashi, S.2019Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech.51, 217-244. · Zbl 1412.76046
[17] Gerz, T., Schumann, U. & Elghobashi, S.E.1989Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech.200, 563-594. · Zbl 0659.76060
[18] Gökalp, I., Chauveau, C., Simon, O. & Chesneau, X.1992Mass transfer from liquid fuel droplets in turbulent flow. Combust. Flame89 (3-4), 286-298.
[19] Hubbard, G.L., Denny, V.E. & Mills, A.F.1975Droplet evaporation: effects of transients and variable properties. Intl J. Heat Mass Transfer18 (9), 1003-1008.
[20] Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S., Matsumoto, Y. & Xiao, F.2012An interface capturing method with a continuous function: the thinc method with multi-dimensional reconstruction. J. Comput. Phys.231 (5), 2328-2358. · Zbl 1427.76205
[21] Isaza, J.C. & Collins, L.R.2009On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow. J. Fluid Mech.637, 213-239. · Zbl 1183.76755
[22] Kasbaoui, M.H., Patel, R.G., Koch, D.L. & Desjardins, O.2017An algorithm for solving the Navier-Stokes equations with shear-periodic boundary conditions and its application to homogeneously sheared turbulence. J. Fluid Mech.833, 687-716. · Zbl 1419.76130
[23] Kuerten, J.G.M.2016Point-particle dns and les of particle-laden turbulent flow-a state-of-the-art review. Flow Turbul. Combust.97 (3), 689-713.
[24] Langmuir, I.1918The evaporation of small spheres. Phys. Rev.12 (5), 368.
[25] Leonard, B.P.1979A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng19 (1), 59-98. · Zbl 0423.76070
[26] Lupo, G., Ardekani, M.N., Brandt, L. & Duwig, C.2019An immersed boundary method for flows with evaporating droplets. Intl J. Heat Mass Transfer143, 118563.
[27] Lupo, G. & Duwig, C.2020Uncertainty quantification of multispecies droplet evaporation models. Intl J. Heat Mass Transfer154, 119697.
[28] Lupo, G., Gruber, A., Brandt, L. & Duwig, C.2020Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow. Intl J. Heat Mass Transfer160, 120184.
[29] Majda, A. & Sethian, J.1985The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol.42 (3-4), 185-205.
[30] Mandal, D.K. & Bakshi, S.2012Internal circulation in a single droplet evaporating in a closed chamber. Intl J. Multiphase Flow42, 42-51.
[31] Marti, F., Martinez, O., Mazo, D., Garman, J. & Dunn-Rankin, D.2017Evaporation of a droplet larger than the kolmogorov length scale immersed in a relative mean flow. Intl J. Multiphase Flow88, 63-68.
[32] Mashayek, F.1998aDirect numerical simulations of evaporating droplet dispersion in forced low mach number turbulence. Intl J. Heat Mass Transfer41 (17), 2601-2617. · Zbl 0962.76629
[33] Mashayek, F.1998bDroplet-turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech.367, 163-203. · Zbl 0924.76108
[34] Maxey, M.R.1982Distortion of turbulence in flows with parallel streamlines. J. Fluid Mech.124, 261-282. · Zbl 0504.76061
[35] Maxey, M.2017Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech.49, 171-193. · Zbl 1359.76232
[36] Méès, L., Grosjean, N., Marié, J.-L. & Fournier, C.2020Statistical lagrangian evaporation rate of droplets released in a homogeneous quasi-isotropic turbulence. Phys. Rev. Fluids5 (11), 113602.
[37] Mittal, R., Ni, R. & Seo, J.-H.2020The flow physics of COVID-19. J. Fluid Mech.894, F2. · Zbl 1460.92061
[38] Motheau, E. & Abraham, J.2016A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy. J. Comput. Phys.313, 430-454. · Zbl 1349.65324
[39] Ng, C.S., Chong, K.L., Yang, R., Li, M., Verzicco, R. & Lohse, D.2021Growth of respiratory droplets in cold and humid air. Phys. Rev. Fluids6 (5), 054303.
[40] Ni, Z., Hespel, C., Han, K. & Foucher, F.2021Numerical simulation of heat and mass transient behavior of single hexadecane droplet under forced convective conditions. Intl J. Heat Mass Transfer167, 120736.
[41] Piedra, S., Lu, J., Ramos, E. & Tryggvason, G.2015Numerical study of the flow and heat transfer of bubbly flows in inclined channels. Intl J. Heat Fluid Flow56, 43-50.
[42] Pinheiro, A.P., Vedovoto, J.M., Da Silveira Neto, A. & Van Wachem, B.G.M.2019Ethanol droplet evaporation: effects of ambient temperature, pressure and fuel vapor concentration. Intl J. Heat Mass Transfer143, 118472.
[43] Podvigina, O. & Pouquet, A.1994On the non-linear stability of the 1: 1: 1 abc flow. Phys. D: Nonlinear Phenom.75 (4), 471-508. · Zbl 0817.76021
[44] Pumir, A.1996Turbulence in homogeneous shear flows. Phys. Fluids8 (11), 3112-3127. · Zbl 1027.76582
[45] Ranz, W.E., Marshall, W.R., et al.1952Evaporation from drops. Chem. Engng Prog.48 (3), 141-146.
[46] Reid, R.C., Prausnitz, J.M. & Poling, B.E.1987The Properties of Gases and Liquids. McGraw-Hill Book CO.
[47] Reveillon, J. & Demoulin, F.-X.2007Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J. Fluid Mech.583, 273-302. · Zbl 1116.76042
[48] Rosti, M.E., Cavaiola, M., Olivieri, S., Seminara, A. & Mazzino, A.2021Turbulence role in the fate of virus-containing droplets in violent expiratory events. Phys. Rev. Res.3 (1), 013091.
[49] Rosti, M.E., De Vita, F. & Brandt, L.2019aNumerical simulations of emulsions in shear flows. Acta Mech.230 (2), 667-682. · Zbl 1412.76069
[50] Rosti, M.E., Ge, Z., Jain, S.S., Dodd, M.S. & Brandt, L.2019bDroplets in homogeneous shear turbulence. J. Fluid Mech.876, 962-984. · Zbl 1430.76207
[51] Rosti, M.E., Olivieri, S., Cavaiola, M., Seminara, A. & Mazzino, A.2020Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing. Sci. Rep.10 (1), 22426.
[52] Russo, E., Kuerten, J.G.M., Van Der Geld, C.W.M. & Geurts, B.J.2014Water droplet condensation and evaporation in turbulent channel flow. J. Fluid Mech.749, 666-700.
[53] Sáenz, P.J., Wray, A.W., Che, Z., Matar, O.K., Valluri, P., Kim, J. & Sefiane, K.2017Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun.8 (1), 14783.
[54] Sahu, S., Hardalupas, Y. & Taylor, A.M.K.P.2018Interaction of droplet dispersion and evaporation in a polydispersed spray. J. Fluid Mech.846, 37-81. · Zbl 1404.76266
[55] Scapin, N., Costa, P. & Brandt, L.2020A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows. J. Comput. Phys.407, 109251. · Zbl 07504719
[56] Sekimoto, A., Dong, S. & Jiménez, J.2016Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids28 (3), 035101.
[57] Span, R. & Wagner, W.1996A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 mpa. J. Phys. Chem. Ref. Data25 (6), 1509-1596.
[58] Tanaka, M.2017Effect of gravity on the development of homogeneous shear turbulence laden with finite-size particles. J. Turbul.18 (12), 1144-1179.
[59] Tonini, S. & Cossali, G.E.2013An exact solution of the mass transport equations for spheroidal evaporating drops. Intl J. Heat Mass Transfer60, 236-240.
[60] Verwey, C. & Birouk, M.2018Fuel vaporization: effect of droplet size and turbulence at elevated temperature and pressure. Combust. Flame189, 33-45.
[61] Verwey, C. & Birouk, M.2020Experimental investigation of the evaporation of suspended mono-sized heptane droplets in turbulence intensities approaching unity. Combust. Flame219, 425-436.
[62] Villermaux, E., Moutte, A., Amielh, M. & Meunier, P.2017Fine structure of the vapor field in evaporating dense sprays. Phys. Rev. Fluids2 (7), 074501.
[63] Wang, Y., Chen, X., Wang, X. & Yang, V.2019Vaporization of liquid droplet with large deformation and high mass transfer rate, II: variable-density, variable-property case. J. Comput. Phys.394, 1-17. · Zbl 1452.76249
[64] Wang, J., Dalla Barba, F. & Picano, F.2021Direct numerical simulation of an evaporating turbulent diluted jet-spray at moderate Reynolds number. Intl J. Multiphase Flow137, 103567.
[65] Weiss, P., Giddey, V., Meyer, D.W. & Jenny, P.2020Evaporating droplets in shear turbulence. Phys. Fluids32 (7), 073305.
[66] Weiss, P., Meyer, D.W. & Jenny, P.2018Evaporating droplets in turbulence studied with statistically stationary homogeneous direct numerical simulation. Phys. Fluids30 (8), 083304.
[67] Wong, S.-C. & Lin, A.-C.1992Internal temperature distributions of droplets vaporizing in high-temperature convective flows. J. Fluid Mech.237, 671-687.
[68] Yousefi, A., Ardekani, M.N. & Brandt, L.2020Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear turbulence. J. Fluid Mech.899, A19. · Zbl 1460.76369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.