×

Intensity of chaotic motion of particles for turbulent gas flow in channels with rough walls. (English. Russian original) Zbl 1509.76050

Fluid Dyn. 57, No. 6, 697-709 (2022); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 6, 3-15 (2022).
Summary: The closed equation for the probability density function (PDF) of the coordinates and the particle velocity distribution is obtained within the framework of the gradient hypothesis. An approximate solution of the equation for the probability density function is found. Using this solution, a closed system of equations for the first and second moments of the particle velocity fluctuations is written. The system of the boundary conditions based on approximate solution of the equation for the probability density function that takes into account the channel wall roughness and the momentum recovery coefficients of reflected particles is given. It is found that turbulent transfer of the momentum of disperse phase into the near-wall channel region leads to the fluctuation amplitude of the axial velocity component of particles which is higher than the axial velocity component of gas. It is shown that collision of the particles with the rough surface leads to an additional generation of the random normal velocity component of particles that changes radically the admixture concentration component as compared with the smooth walls. The calculation results are compared with experimental data.

MSC:

76F55 Statistical turbulence modeling
76F25 Turbulent transport, mixing
Full Text: DOI

References:

[1] Kussin, J.; Sommerfeld, M., Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. Fluids, 33, 143-159 (2002) · doi:10.1007/s00348-002-0485-9
[2] Sommerfeld, M.; Kussin, J., Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Int. J. Multiph. Flow, 142, 180-192. (2004) · doi:10.1016/j.powtec.2004.05.002
[3] Benson, M.; Tanaka, T.; Eaton, J. K., Effects of wall roughness on particle velocities in a turbulent channel flow, J. Fluids Eng, 127, 250-256 (2004) · doi:10.1115/1.1891149
[4] Squires, K. D.; Simonin, O., LES-DPS of the effect of wall roughness on dispersed-phase transport in particle-laden turbulent channel flow, Int. J. Heat and Fluid Flow, 27, 619-626 (2006) · doi:10.1016/j.ijheatfluidflow.2006.02.009
[5] Konan, N. A.; Kannengieser, O.; Simonin, O., Stochastic modeling of the multiple rebound effects for particle-rough wall collisions, Int. J. Multiph. Flow, 35, 933-945 (2009) · doi:10.1016/j.ijmultiphaseflow.2009.05.006
[6] Vreman, A. W., Turbulence attenuation in particle-laden flow in smooth and rough channels, J. Fluid Mech, 773, 103-136 (2015) · doi:10.1017/jfm.2015.208
[7] Radenkovic, D.; Simonin, O., Stochastic modelling of three-dimensional particle rebound from isotropic rough wall surface, Int. J. Multiph. Flow, 109, 35-50 (2018) · doi:10.1016/j.ijmultiphaseflow.2018.07.013
[8] Milici, B., Modification of particle laden near-wall turbulence in a vertical channel bounded by rough walls, Int. J. Multiph. Flow, 103, 151-168 (2018) · doi:10.1016/j.ijmultiphaseflow.2018.02.020
[9] Fong, K. O.; Amili, O.; Coletti, F., Velocity and spatial distribution of inertial particles in a turbulent channel flow, J. Fluid Mech, 872, 367-406 (2019) · Zbl 1430.76469 · doi:10.1017/jfm.2019.355
[10] Dong, L.; Anyang, W.; Kun, L.; Jianren, F., Direct numerical simulation of a particle-laden flow in a flat plate boundary layer, Int. J. Multiph. Flow, 79, 124-143 (2016) · doi:10.1016/j.ijmultiphaseflow.2015.10.011
[11] Bernardini, M., Reynolds number scaling of inertial particle statistics in turbulent channel flows, J. Fluid Mech, 758, R1 (2014) · doi:10.1017/jfm.2014.561
[12] Reeks, M. W., On the continuum equations for dispersed particles in non-uniform flows, Phys. Fluids A, 446, 1290-1303 (1992) · Zbl 0781.76089 · doi:10.1063/1.858247
[13] Liang, G. Y.; Cao, L.; Wu, D. J., Approximate Fokker-Planck equation of system driven by multiplicative colored noises with colored cross-correlation, Physica A, 335, 371-384 (2004) · doi:10.1016/j.physa.2003.12.023
[14] Klyatskin, V. I., Stochastic Equations through the Eye of the Physicist (2005), Amsterdam: Elsevier, Amsterdam · Zbl 1090.82002
[15] Derevich, I.V., Shchadinskiy, D.M., and Tun, Z.H., Probabilistic model of dispersed turbulent flow in channels with rough walls, Aerosol Sci. Technol., 2020, vol. 54, no. 8. doi:10.1080/02786826.2020.1739617
[16] Kolmogorov, A. N., Foundations of the Theory of Probability (2013)
[17] Wetchagaruna, S.; Riley, J. J., Dispersion and temperature statistics of inertial particles in isotropic turbulence, Phys. Fluids, 22, 063301-1-15 (2010) · Zbl 1190.76129 · doi:10.1063/1.3392772
[18] Derevich, I. V., Spectral diffusion model of heavy inertial particles in a random velocity field of the continuum medium, Themophys. Aeromech, 22, 143-162 (2015) · doi:10.1134/S086986431502002X
[19] Herrero, J.; Grau, F. X.; Grifoll, J.; Giralt, F., A near wall k-epsilon formulation for high Prandtl number heat transfer, Int. J. Heat Mass Transfer, 34, 711-721 (1991) · doi:10.1016/0017-9310(91)90119-Y
[20] Kim, J.; Moin, P.; Moser, R. J., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech, 177, 133-166 (1987) · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[21] Derevich, I. V.; Klochkov, A. K., Analytical and numerical solution of the equation for the probability density function of the particle velocity in a turbulent flow, J. Eng. Phys. Thermophys, 93, 1043-1054 (2020) · doi:10.1007/s10891-020-02206-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.