×

Hydrodynamic instabilities in the models of the formation of young stellar objects. (English) Zbl 1509.76035

Summary: The features of unstable motions in the regions of active star formation are considered. The purpose of the research is to determine the magnitude and scale of inhomogeneities for which the Jeans gravitational compression criterion is satisfied. Mathematical models are used that take into account nonequilibrium radiation processes and self-gravity. The results of calculations of the cumulation of mass during the propagation of the ionization-shock front in the cloud are presented; a qualitative agreement is established between the motion structure and the one obtained on the basis of the thin layer model Cherny. In the case of Richtmyer-Meshkov instability it was found that density perturbations increase significantly due to radiation cooling. Taking into account the gravitational interaction between particles of the accelerating moving gas layer, a criterion is formulated for the dominant influence of self-gravity on the shape of inhomogeneities compared with the Rayleigh-Taylor instability. Morphologically, heterogeneities of various origins differ little and are observed mainly on the inner side of the ionization-shock front, facing the radiation source. The authors of this work for the first time found that gas-dynamic phenomena at the outer boundary of a layer compressed by a shock wave can reflect the presence of condensations that existed in the interstellar medium before the passage of the ionization shock front. Computer modeling has shown that when a condensation (cloud, clot) penetrates into an accelerating moving layer, the formation of a cumulative jet occurs.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
76L05 Shock waves and blast waves in fluid mechanics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
Full Text: DOI

References:

[1] Elmegreen, B. G.; Lada, C. J., Sequential formation of subgroups in OB associations, Astrophys. J., 214, 725-741 (1977) · doi:10.1086/155302
[2] Churchwell, E., Watson, D.F., Povich, M.S., Taylor, M.G., Babler, B.L., Meade, M.R., Benjamin, R.A., Indebetouw, R., and Whitney, B.A., The bubbling Galactic disk. II. The inner 20°, Astrophys. J., 2007, vol. 670, pp. 428-441.
[3] Deharveng, L.; Schuller, F.; Anderson, L. D.; Zavagno, A.; Wyrowski, F.; Menten, K. M.; Bronfman, L.; Testi, L.; Walmsley, C. M.; Wienen, M., A gallery of bubbles. The nature of the bubbles observed by Spitzer and what ATLASGAL tells us about the surrounding neutral material, Astron. Astrophys., 523, 1-135 (2010) · doi:10.1051/0004-6361/201014422
[4] Anderson, L. D.; Zavagno, A.; Deharveng, L.; Abergel, A.; Motte, F.; André, Ph.; Bernard, J.-P.; Bontemps, S.; Hennemann, M.; Hill, T.; Rodón, J. A.; Roussel, H.; Russeil, D., The dust properties of bubble HII regions as seen by Herschel, Astron. Astrophys., 542, 1-27 (2012) · doi:10.1051/0004-6361/201117640
[5] Aghanim, N., Planck intermediate results XXXIV. The magnetic field structure in the Rosette Nebula, Astron. Astrophys., 586, 1-16 (2016)
[6] Capriotti, E. R., The structure and evolution of planetary nebulae, Astrophys. J., 179, 459-516 (1973) · doi:10.1086/151890
[7] White, G. J.; Nelson, R. P.; Holland, W. S.; Robson, E. I.; Greaves, J. S.; McCaughrean, M. J.; Pilbratt, G. L.; Balser, D. S.; Oka, T.; Sakamoto, S.; Hasegawa, T.; McCutcheon, W. H.; Matthews, H. E.; Fridlund, C. V.M.; Tothill, N. F.H.; Huldtgren, M.; Deane, J. R., The Eagle Nebula’s fingers-pointers to the earliest stages of star formation?, Astron. Astrophys., 342, 233-256 (1999)
[8] Schneider, N., Bontemps, S., Motte, F., Blazere, A., André, Ph., Anderson, L.D., Arzoumanian, D., Comeron, F., Didelon, P., Di Francesco, J., Duarte-Cabral, A., Guarcello, M.G., Hennemann, M., Hill, T., Könyves, V., Marston, A., Minier, V., Rygl, K.L.J., Röllig, M., Roy, A., Spinoglio, L., Tremblin, P., White, G.J., and Wright, N.J., Globules and pillars in Cygnus XI Herschel far-infrared imaging of the Cygnus OB2 environment, Astron. Astrophys., 2016, vol. 591, no. A40, pp. 1-21.
[9] Mathews, W. G.; O’dell, C. R., Evolution of diffuse nebulae, Annu. Rev. Astron. Astrophys., 7, 67-98 (1969) · doi:10.1146/annurev.aa.07.090169.000435
[10] Baranov, V.B. and Krasnobaev, K.V., Gidrodinamicheskaya teoriya kosmicheskoi plazmy (Hydrodynamic Theory of Space Plasma), Moscow: Nauka, 1977.
[11] Spitzer, L., Physical Processes in the Interstellar Medium (1981)
[12] Kotova, G.Yu., Krasnobaev, K.V., and Tagirova, R.R., Two-dimensional unsteady motions of photoevaporable gas shells, in Problemy sovremennoi mekhaniki: k 85-letiyu akademika G.G. Chernogo (Problems of Modern Mechanics: to the 85th Anniversary of G.G. Chernyi, Academician), Barmina, A.A., Ed., Moscow: MSU, Omega-L, 2008, pp. 190-206.
[13] Fedchenko, A.S. and Krasnobaev, K.V., Analysis of the approximate solutions of HII region expansion problem, J. Phys.: Conf. Ser., 2018, vol. 1129, no. 1, p. 012012.
[14] Kotova, G. Yu.; Krasnobaev, K. V., Acceleration of a spherical neutral shell produced by an ionization-shock front in an inhomogeneous interstellar medium, Astron. Lett., 35, 167-174 (2009) · doi:10.1134/S1063773709030037
[15] Kotova, G. Yu.; Krasnobaev, K. V., Numerical simulation of unstable two-dimensional motions of the circumstellar shell, Astron. Lett., 36, 479-489 (2010) · doi:10.1134/S1063773710070030
[16] Zonenko, S. I.; Chernyi, G. G., New form of cumulation of the energy and momentum of plates and shells propelled by an explosion, Dokl. Phys., 48, 239-243 (2003) · doi:10.1134/1.1581320
[17] Falle, S. A.E. G., A numerical calculation of the effect of stellar winds on the interstellar medium, Astron. Astrophys., 43, 323-336 (1975)
[18] Krasnobaev, K. V.; Tagirova, R. R., On the manifestation of the Richtmyer-Meshkov instability in an inhomogeneous interstellar medium with radiative cooling, Astron. Lett., 35, 326-332 (2009) · doi:10.1134/S1063773709050065
[19] Krasnobaev, K. V.; Kotova, G. Yu.; Tagirova, R. R., Two-dimensional perturbations of the accelerated motion of inhomogeneous gaseous layers and shells in the interstellar medium, Astron. Lett., 41, 104-113 (2015) · doi:10.1134/S1063773715040052
[20] Krasnobaev, K. V.; Tagirova, R. R.; Kotova, G. Yu., Model of the expansion of HII region RCW 82, Astrophys. J., 786, 90-95 (2014) · doi:10.1088/0004-637X/786/2/90
[21] Kotova, G. Yu.; Krasnobaev, K. V., Interaction of an accelerating layer with a cloud: formation of tails and cumulative jets, Mon. Not. R. Astron. Soc., 492, 2229-2235 (2020) · doi:10.1093/mnras/stz3604
[22] Pittard, J. M.; Falle, S. A.E. G.; Hartquist, T. W.; Dyson, J. E., The turbulent destruction of clouds. I. A k-epsilon treatment of turbulence in 2D models of adiabatic shock-cloud interactions, Mon. Not. R. Astron. Soc., 394, 1351-1378 (2009) · doi:10.1111/j.1365-2966.2009.13759.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.