×

Mean-field convergence of point vortices to the incompressible Euler equation with vorticity in \(L^\infty\). (English) Zbl 1509.35200

The classical point vortex model is the system of \(N\) ordinary differential equations written as: \(\overset{.}{x}_{i}(t)=\sum_{1\leq j\leq N,j\neq i}a_{j}(\nabla ^{\perp }\mathfrak{g})(x_{i}(t)-x_{j}(t))\), \(i=1,\dots,N\), where \(N\) is the number of vortices, \(a_{j}\in \mathbb{R}\setminus \{0\}\), \( j=1,\dots,N\), the intensities of the vortices, \(\mathfrak{g}(x)=-\frac{1}{ 2\pi }\ln \left\vert x\right\vert \) the 2D Coulomb potential, and \(\nabla ^{\perp }=(-\partial _{x_{2}},\partial _{x_{1}})\) the perpendicular gradient.The initial condition\(x_{i}(0)=x_{i}^{0}\) is imposed, where \( x_{1}^{0},\dots,x_{N}^{0}\in \mathbb{R}^{2}\) are pairwise distinct initial positions. This model is an idealization of a 2D incompressible and inviscid fluid flow, which may be described in a vorticity form by the 2D incompressible Euler equation: \(\partial _{t}\omega +u\cdot \nabla \omega =0\) , \(u=(\nabla ^{\perp }\mathfrak{g})\ast \omega \), \((t,x)\in \lbrack 0,\infty )\times \mathbb{R}^{2}\), with the initial condition for the vorticity \( \omega (0,x)=\omega ^{0}(x)\). The first main result proves the existence of an absolute constant \(C>0\) such that a weak solution \(\omega \in L^{\infty }([0,\infty );\mathcal{P}(\mathbb{R}^{2})\cap L^{\infty }(\mathbb{R}^{2}))\) to the Euler equation with initial datum \(\omega ^{0}\) satisfies \(\int_{ \mathbb{R}^{2}}\ln\left\langle x\right\rangle \omega ^{0}(x)dx+\int_{(\mathbb{ R}^{2})^{2}}\ln\left\langle x-y\right\rangle \omega ^{0}(x)\omega ^{0}(y)dxdy<\infty \), \(\mathcal{P}\) denoting the space of probability measures. Let \(N\in \mathbb{N}\), \(\underline{x}_{N}\in C^{\infty }([0,\infty );(\mathbb{R}^{2})^{N}\setminus \Delta _{N})\) be a solution to the point vortex system and \(\mathfrak{F}_{N}^{\mathrm{avg}}:[0,\infty )\rightarrow \mathbb{R}\) be the functional defined as \(\mathfrak{F}_{N}^{\mathrm{avg}}(\underline{x} _{N}(t),\omega (t))=\int_{(\mathbb{R}^{2})^{2}\setminus \Delta _{2}} \mathfrak{g}(x-y)d(\omega _{N}-\omega )(t,x)d(\omega _{N}-\omega )(t,y)\), where \(\omega _{N}\) is the empirical measure defined as \(\omega _{N}(t,x)=\sum_{i=1}^{N}a_{i}\delta _{x_{i}(t)}(x)\) and being a solution to the weak vorticity formulation of the Euler equation. Here \(\Delta _{N}=\{(y_{1},\dots,y_{N})\in (\mathbb{R}^{2})^{N}\): \(\exists 1\leq i=j\leq N\) such that \(y_{i}=y_{j}\}\). If for given \(t>0\), \(N\in \mathbb{N}\) sufficiently large so that \(\frac{Ct(\left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{1/2}+\left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{3/2})\left\vert \ln N\right\vert ^{2}}{N} +\left\vert \mathfrak{F}_{N}^{\mathrm{avg}}(\underline{x}_{N}(0),\omega (0))\right\vert <\exp(-e^{Ct\left( \left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{1/2}+\left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{3/2}\right) }\), then \(\mathfrak{F}_{N}^{\mathrm{avg}}( \underline{x}_{N}(t),\omega (t))\) satisfies the inequality \[ \mathfrak{F} _{N}^{\mathrm{avg}}(\underline{x}_{N}(t),\omega (t))\leq \left( \mathfrak{F} _{N}^{\mathrm{avg}}(\underline{x}_{N}(0),\omega (0))+\frac{Ct(\left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{1/2}+\left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{3/2})\left\vert \ln N\right\vert ^{2}}{N}\right) ^{\exp(-e^{Ct\left( \left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{1/2}+\left\Vert \omega ^{0}\right\Vert _{L^{\infty }(\mathbb{R}^{2})}^{3/2}\right) }}. \] From this main result, the authors derive an estimate for the norm \(\left\Vert \omega _{N}-\omega \right\Vert _{L^{\infty }([0,T];H^{s}(\mathbb{R}^{2}))}\), whence the convergence \(\omega _{N}\overset{\ast }{\rightarrow }_{N\rightarrow \infty }\omega \) in \(\mathcal{M}(\mathbb{R}^{2})\), locally uniformly in time, if \(\mathfrak{F}_{N}^{\mathrm{avg}}(\underline{x}_{N}(0),\omega (0))\rightarrow _{N\rightarrow \infty }0\). For the proof, the authors apply the modulated-energy method developed by M. Duerinckx and S. Serfaty in their works [SIAM J. Math. Anal. 48, No. 3, 2269–2300 (2016; Zbl 1348.82050); Duke Math. J. 169, No. 15, 2887–2935 (2020; Zbl 1475.35341)]. He recalls properties of the Coulomb potential \(\mathfrak{g}\) and of the modulated energy \(\mathfrak{F}_{N}^{\mathrm{avg}}(.,.)\). He introduces a truncation \(\mathfrak{g}_{\eta }:\mathbb{R}^{2}\rightarrow \mathbb{R}\) for the potential \(g\) through \(\mathfrak{g}_{\eta }(x)=\mathfrak{g}(x)\), \( \left\vert x\right\vert \geq \eta \), \(\mathfrak{g}_{\eta }(x)=\widetilde{ \mathfrak{g}}(x)\), \(\left\vert x\right\vert <\eta \), and the associated smearing procedure for point masses through \(\delta ^{(\eta )}0=-\Delta \mathfrak{g}_{\eta }=\sigma _{\partial B(0,\eta )}\), the uniform probability measure on the sphere \(\partial B(0,\eta )\). He defines the notion of weak solution to the Euler equation through Duhamel’s formula and recalls an existence and uniqueness result and properties of such a weak solution.

MSC:

35Q31 Euler equations
82C22 Interacting particle systems in time-dependent statistical mechanics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76B47 Vortex flows for incompressible inviscid fluids
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Ambrosio, L.; Serfaty, S., A gradient flow approach to an evolution problem arising in superconductivity, Commun. Pure Appl. Math., 61, 1495-1539 (2008) · Zbl 1171.35005 · doi:10.1002/cpa.20223
[2] Bahouri, H.; Chemin, J-Y, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., 127, 159-181 (1994) · Zbl 0821.76012 · doi:10.1007/BF00377659
[3] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, vol. 343. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011) · Zbl 1227.35004
[4] Brenier, Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Commun. Partial Differ. Equ., 25, 737-754 (2000) · Zbl 0970.35110 · doi:10.1080/03605300008821529
[5] Bresch, D., Jabin, P.-E., Wang, Z.:, Modulated free energy and mean field limit, Séminaire Laurent Schwartz-EDP et applications, pp. 1-22, 2019 · Zbl 1506.35247
[6] Bresch, D.; Jabin, P-E; Wang, Z., On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak-Keller-Segel model, C. R. Math. Acad. Sci. Paris, 357, 708-720 (2019) · Zbl 1428.35617 · doi:10.1016/j.crma.2019.09.007
[7] Bresch, D.,Jabin, P.-E., Wang, Z.: Mean-field limit and quantitative estimates with singular attractive kernels, arXiv preprint arXiv:2011.08022, 2020
[8] Brzeźniak, Z. a., Flandoli, F., Maurelli, M.: Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity, Arch. Ration. Mech. Anal., 221 , pp. 107-142, 2016 · Zbl 1342.35231
[9] Chapman, SJ; Rubinstein, J.; Schatzman, M., A mean-field model of superconducting vortices, Eur. J. Appl. Math., 7, 97-111 (1996) · Zbl 0849.35135 · doi:10.1017/S0956792500002242
[10] Cheskidov, A.; Filho, MCL; Lopes, HJN; Shvydkoy, R., Energy conservation in two-dimensional incompressible ideal fluids, Commun. Math. Phys., 348, 129-143 (2016) · Zbl 1351.35112 · doi:10.1007/s00220-016-2730-8
[11] Dafermos, CM, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70, 167-179 (1979) · Zbl 0448.73004 · doi:10.1007/BF00250353
[12] Delort, J-M, Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., 4, 553-586 (1991) · Zbl 0780.35073 · doi:10.1090/S0894-0347-1991-1102579-6
[13] DiPerna, RJ, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28, 137-188 (1979) · Zbl 0409.35057 · doi:10.1512/iumj.1979.28.28011
[14] Du, Q.; Zhang, P., Existence of weak solutions to some vortex density models, SIAM J. Math. Anal., 34, 1279-1299 (2003) · Zbl 1044.35085 · doi:10.1137/S0036141002408009
[15] Duerinckx, M., Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., 48, 2269-2300 (2016) · Zbl 1348.82050 · doi:10.1137/15M1042620
[16] Duerinckx, M.: Topics in the mathematics of disordered media, PhD thesis, Université Pierre et Marie Curie-Paris VI, 2017
[17] E, W.: Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D, 77 , pp. 383-404, 1994 · Zbl 0814.34039
[18] Flandoli, F.; Gubinelli, M.; Priola, E., Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations, Stoch. Process. Appl., 121, 1445-1463 (2011) · Zbl 1221.60082 · doi:10.1016/j.spa.2011.03.004
[19] Fournier, N.; Hauray, M.; Mischler, S., Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), 16, 1423-1466 (2014) · Zbl 1299.76040 · doi:10.4171/JEMS/465
[20] F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity, vol. 3 of Lect. Notes Appl. Math. Mech., Springer, [Cham], 2016, pp. 1-144.
[21] Goodman, J.; Hou, TY, New stability estimates for the \(2\)-D vortex method, Commun. Pure Appl. Math., 44, 1015-1031 (1991) · Zbl 0745.76061 · doi:10.1002/cpa.3160440813
[22] Goodman, J.; Hou, TY; Lowengrub, J., Convergence of the point vortex method for the \(2\)-D Euler equations, Commun. Pure Appl. Math., 43, 415-430 (1990) · Zbl 0694.76013 · doi:10.1002/cpa.3160430305
[23] Grafakos, L.: Classical Fourier Analysis, no. 249 in Graduate Texts in Mathematics, Springer, third ed., 2014 · Zbl 1304.42001
[24] Grafakos, L.: Modern Fourier Analysis, no. 250 in Graduate Texts in Mathematics, 3rd edn. Springer, 2014 · Zbl 1304.42002
[25] Hauray, M., Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19, 1357-1384 (2009) · Zbl 1188.35126 · doi:10.1142/S0218202509003814
[26] Hauray, M.; Mischler, S., On Kac’s chaos and related problems, J. Funct. Anal., 266, 6055-6157 (2014) · Zbl 1396.60102 · doi:10.1016/j.jfa.2014.02.030
[27] Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 55, 25-55 (1858) · ERAM 055.1448cj
[28] Jabin, P-E, A review of the mean field limits for Vlasov equations, Kinet. Relat. Models, 7, 661-711 (2014) · Zbl 1318.35129 · doi:10.3934/krm.2014.7.661
[29] Jabin, P-E; Wang, Z., Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal., 271, 3588-3627 (2016) · Zbl 1388.60163 · doi:10.1016/j.jfa.2016.09.014
[30] Jabin, P-E; Wang, Z., Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1,\infty }\) kernels, Invent. Math., 214, 523-591 (2018) · Zbl 1402.35208 · doi:10.1007/s00222-018-0808-y
[31] Kirchoff, G.: Vorlesungen Ueber Math. Phys, Teuber (1876) · JFM 08.0542.01
[32] Kiselev, A.; Šverák, V., Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. Math., 180, 1205-1220 (2014) · Zbl 1304.35521 · doi:10.4007/annals.2014.180.3.9
[33] Lin, F.; Zhang, P., On the hydrodynamic limit of Ginzburg-Landau vortices, Discret. Contin. Dyn. Syst., 6, 121-142 (2000) · Zbl 1034.35128 · doi:10.3934/dcds.2000.6.121
[34] Liu, J-G; Xin, Z., Convergence of the point vortex method for 2-D vortex sheet, Math. Comp., 70, 595-606 (2001) · Zbl 0977.76069 · doi:10.1090/S0025-5718-00-01271-0
[35] Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, vol. 27. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) · Zbl 0983.76001
[36] Marchioro, C., Pulvirenti, M.: Vortex methods in two-dimensional fluid dynamics, in Vortex Methods in Two-Dimensional Fluid Dynamics, vol. 203, 1984 · Zbl 0545.76027
[37] Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids, vol. 96, Springer Science & Business Media, 2012 · Zbl 0789.76002
[38] Masmoudi, N.; Zhang, P., Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 441-458 (2005) · Zbl 1070.35036 · doi:10.1016/j.anihpc.2004.07.002
[39] Newton, P. K.: The \(N\)-vortex problem, vol. 145 of Applied Mathematical Sciences. Springer, New York, 2001. Analytical techniques. · Zbl 0981.76002
[40] Osada, H., Propagation of chaos for the two-dimensional Navier-Stokes equation, Proc. Jpn. Acad. Ser. A Math. Sci., 62, 8-11 (1986) · Zbl 0679.76033 · doi:10.3792/pjaa.62.8
[41] Osada, H.: Limit points of empirical distributions of vortices with small viscosity, in Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn.,: vol. 9 of IMA Vol. Math. Appl. Springer, New York1987, 117-126, 1986 · Zbl 0657.60078
[42] Osada, H., Propagation of chaos for the two-dimensional Navier-Stokes equation, in Probabilistic methods in mathematical physics (Katata, Kyoto: Academic Press. Boston, MA1987, 303-334, 1985 · Zbl 0645.76040
[43] Petrache, M.; Serfaty, S., Next order asymptotics and renormalized energy for Riesz interactions, J. Inst. Math. Jussieu, 16, 501-569 (2017) · Zbl 1373.82013 · doi:10.1017/S1474748015000201
[44] Rosenhead, L.: The formation of vortices from a surface of discontinuity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 134 , pp. 170-192.1931 · Zbl 0003.08401
[45] Rosenzweig, M.: The mean-field limit of the Lieb-Liniger model, arXiv preprint arXiv:1912.07585, 2019
[46] Rosenzweig, M., Justification of the point vortex approximation for modified surface quasi-geostrophic equations, SIAM J. Math. Anal., 52, 1690-1728 (2020) · Zbl 1433.76030 · doi:10.1137/19M1262620
[47] Rosenzweig, M.: The mean-field limit of stochastic point vortex systems with multiplicative noise, arXiv preprint arXiv:2011.12180, 2020
[48] Rougerie, N.; Serfaty, S., Higher-dimensional Coulomb gases and renormalized energy functionals, Commun. Pure Appl. Math., 69, 519-605 (2016) · Zbl 1338.82043 · doi:10.1002/cpa.21570
[49] Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation, vol. 1971. Lecture Notes in Mathematics. Springer, Berlin (2009) · Zbl 1171.82002
[50] Schochet, S., The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation, Commun. Partial Differ. Equ., 20, 1077-1104 (1995) · Zbl 0822.35111 · doi:10.1080/03605309508821124
[51] Schochet, S., The point-vortex method for periodic weak solutions of the 2-d Euler equations, Commun. Pure Appl. Math., 49, 911-965 (1996) · Zbl 0862.35092 · doi:10.1002/(SICI)1097-0312(199609)49:9<911::AID-CPA2>3.0.CO;2-A
[52] Serfaty, S., Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations, J. Amer. Math. Soc., 30, 713-768 (2017) · Zbl 1406.35377 · doi:10.1090/jams/872
[53] Serfaty, S.: Mean field limit for coulomb-type flows, Duke Math. J., 169 (2020), pp. 2887-2935. Appendix with Mitia Duerinckx · Zbl 1475.35341
[54] Serfaty, S.; Vázquez, JL, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calc. Var. Partial Differ. Equ., 49, 1091-1120 (2014) · Zbl 1290.35316 · doi:10.1007/s00526-013-0613-9
[55] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions, vol. 2, Princeton University Press, 1970 · Zbl 0207.13501
[56] Stein, E. M., Murphy, T. S.: Harmonic Analysis (PMS-43): Real-Variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43), Princeton University Press, 1993 · Zbl 0821.42001
[57] Westwater, F.: Rolling up of the surface of discontinuity behind an aerofoil of finite span, HM Stationery Office, 1935
[58] Wolibner, W., Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., 37, 698-726 (1933) · Zbl 0008.06901 · doi:10.1007/BF01474610
[59] Yau, H-T, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys., 22, 63-80 (1991) · Zbl 0725.60120 · doi:10.1007/BF00400379
[60] Yudovich, V., Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys., 3, 1407-1456 (1963) · Zbl 0147.44303 · doi:10.1016/0041-5553(63)90247-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.