×

On the minimum-norm least squares solution of the complex generalized coupled Sylvester matrix equations. (English) Zbl 1509.15009

Summary: By means of the real linear operator, we establish an iterative algorithm for solving a class of complex generalized coupled Sylvester matrix equations. The finite termination of the proposed algorithm is proved. By representing a complex matrix as a larger real matrix, we present a new method to prove that the minimum-norm solution or minimum-norm least squares solution of the complex generalized coupled Sylvester matrix equations can be obtained by an appropriate selection for the initial matrices, which has not been found in the existing work. Numerical experiments on some randomly generated data and practical image restoration problem show that the proposed algorithm is feasible and effective.

MSC:

15A24 Matrix equations and identities
65F45 Numerical methods for matrix equations
Full Text: DOI

References:

[1] Bouhamidi, A.; Jbilou, K., Sylvester Tikhonov-regularization methods in image restoration, J. Comput. Appl. Math., 206, 86-98 (2007) · Zbl 1131.65036
[2] Bouhamidi, A.; Jbilou, K.; Raydan, M., Convex constrained optimization for large-scale generalized Sylvester equations, Comput. Optim. Appl., 48, 233-253 (2011) · Zbl 1220.90088
[3] Bouhamidi, A.; Enkhbat, R.; Jbilou, K., Conditional gradient Tikhonov method for a convex optimization problem in image restoration, J. Comput. Appl. Math., 255, 580-592 (2014) · Zbl 1291.94009
[4] Zhou, B.; Lam, J.; Duan, G. R., Convergence of gradient-based iterative solution of the coupled Markovian jump Lyapunov equations, Comput. Math. Appl., 56, 3070-3078 (2008) · Zbl 1165.15304
[5] Lv, L. L.; Duan, G. R.; Zhou, B., Parametric pole assignment and robust pole assignment for discrete-time linear periodic systems, SIAM J. Control Optim., 48, 3975-3996 (2010) · Zbl 1202.93043
[6] Lv, L. L.; Zhang, Z.; Zhang, L., A parametric poles assignment algorithm for second-order linear periodic systems, J. Franklin Inst., 354, 8057-8071 (2017) · Zbl 1380.93124
[7] Wang, Y. J.; Ding, F., Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model, Automatica, 71, 308-313 (2016) · Zbl 1343.93087
[8] Zhang, H. M., Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations, Comput. Math. Appl., 77, 1233-1244 (2019) · Zbl 1442.65071
[9] Zhang, H. M.; Yin, H. C., Refinements of the Hadamard and Cauchy-Schwarz inequalities with two inequalities of the principal angles, J. Math. Inequal., 13, 423-435 (2019) · Zbl 1431.51011
[10] Xu, L., Separable newton recursive estimation method through system responses based on dynamically discrete measurements, Int. J. Control Autom., 20, 432-443 (2022)
[11] Xu, L.; Ding, F.; Zhu, Q., Separable synchronous multi-innovation gradient-based iterative signal modeling from online measurements, IEEE Trans. Instrum. Meas., 71, 6501313 (2022)
[12] Xu, L., Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window, Circ. Syst. Signal Pr., 41, 1-26 (2022)
[13] Zhang, X.; Ding, F., Optimal adaptive filtering algorithm by using the fractional-order derivative, IEEE Signal Proc. Let., 29, 399-403 (2022)
[14] Zhou, Y. H.; Zhang, X.; Ding, F., Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models, Appl. Math. Comput., 414, 126663 (2022) · Zbl 1510.93338
[15] Wu, A. G.; Fu, Y. M.; Duan, G. R., On solutions of matrix equations \(V - A V F = B W\) and \(V - A \overline{V} F = B W\), Math. Comput. Model., 47, 1181-1197 (2008) · Zbl 1145.15302
[16] Liao, A. P.; Bai, Z. Z.; Lei, Y., Best approximate solution of matrix equation \(A X B + C Y D = E\), SIAM J. Matrix Anal. Appl., 27, 675-688 (2005) · Zbl 1096.15004
[17] Ding, F.; Liu, P. X.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 41-50 (2008) · Zbl 1143.65035
[18] Ding, J.; Liu, Y.; Ding, F., Iterative solutions to matrix equations of the form \(A_i X B_i = F_i\), Comput. Math. Appl., 59, 3500-3507 (2010) · Zbl 1197.15009
[19] Ding, F.; Zhang, H. M., Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems, IET Control Theory A., 8, 1588-1595 (2014)
[20] Heyouni, M.; Saberi-Movahed, F.; Tajaddini, A., On global Hessenberg based methods for solving Sylvester matrix equations, Comput. Math. Appl., 77, 77-92 (2019) · Zbl 1442.65064
[21] Xie, L.; Liu, Y.; Yang, H., Gradient based and least squares based iterative algorithms for matrix equations \(A X B + C X^{T D} = F\), Appl. Math. Comput., 217, 2191-2199 (2010) · Zbl 1210.65097
[22] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE T. Automat. Contr., 50, 1216-1221 (2005) · Zbl 1365.65083
[23] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44, 2269-2284 (2006) · Zbl 1115.65035
[24] Zhang, H. M., Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications, Comput. Math. Appl., 70, 2049-2062 (2015) · Zbl 1443.65059
[25] Huang, B. H.; Ma, C. F., Gradient-based iterative algorithms for generalized coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 75, 2295-2310 (2018) · Zbl 1409.65024
[26] Huang, B. H.; Ma, C. F., The relaxed gradient-based iterative algorithms for a class of generalized coupled Sylvester-conjugate matrix equations, J. Franklin Inst., 355, 3168-3195 (2018) · Zbl 1395.65011
[27] Lv, L. L.; Zhang, Z.; Zhang, L.; Liu, X. X., Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, J. Franklin Inst., 355, 7691-7705 (2018) · Zbl 1398.93207
[28] Li, S. K., A finite iterative method for solving the generalized Hamiltonian solutions of coupled Sylvester matrix equations with conjugate transpose, Int. J. Comput. Math., 94, 757-773 (2016) · Zbl 1373.65032
[29] Zhang, H. M., A finite iterative algorithm for solving the complex generalized coupled Sylvester matrix equations by using the linear operators, J. Franklin Inst., 354, 1856-1874 (2017) · Zbl 1378.93047
[30] Lv, L. L.; Zhang, Z., Finite iterative solutions to periodic Sylvester matrix equations, J. Franklin Inst., 354, 2358-2370 (2017) · Zbl 1398.93365
[31] Zhang, L.; Tang, S. Y.; Lv, L. L., An finite iterative algorithm for sloving periodic Sylvester bimatrix equations, J. Franklin Inst., 357, 10757-10772 (2020) · Zbl 1450.93010
[32] Zhang, H. M.; Yin, H. C., Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations, Comput. Math. Appl., 73, 2529-2547 (2017) · Zbl 1373.65033
[33] Huang, B. H.; Ma, C. F., On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations, Comput. Math. Appl., 74, 532-555 (2017) · Zbl 1390.15050
[34] Huang, B. H.; Ma, C. F., An iterative algorithm for the least Frobenius norm Hermitian and generalized skew Hamiltonian solutions of the generalized coupled sylvester-conjugate matrix equations, Numer. Algorithms, 78, 1271-1301 (2018) · Zbl 1445.15010
[35] Lv, L. L.; Chen, J. B.; Zhang, Z., A numerical solution of a class of periodic coupled matrix equations, J. Franklin Inst., 358, 2039-2059 (2021) · Zbl 1455.65064
[36] Lv, L. L.; Tang, S. Y.; Zhang, L., Parametric solutions to generalized periodic Sylvester bimatrix equations, J. Franklin Inst., 57, 3601-3621 (2020) · Zbl 1437.93039
[37] Lv, L. L.; Chen, J. B.; Zhang, L.; Zhang, F. R., Gradient-based neural networks for solving periodic sylvester matrix equations, J. Franklin Inst. (2022) · Zbl 1505.65178
[38] Horn, R. A.; Johnson, C. R., Topics in matrix analysis (1991), Cambridge University Press: Cambridge University Press New York · Zbl 0729.15001
[39] Zhou, B.; Cai, G. B.; Lam, J., Positive definite solutions of the nonlinear matrix equation \(X + A^H \overline{X}^{- 1} A = I\), Appl. Math. Comput., 219, 7377-7391 (2013) · Zbl 1291.15044
[40] Davis, C., Theorems on projections in Hilbert space, B. AM. Math. Soc., 60, 146 (1954)
[41] Ben-Israel, A.; Greville, T. N.E., Generalized inverse: Theory and applications (2002), Wiley: Wiley New York
[42] Golub, G. H.; van Loan, C., Matrix computations (1996), third ed. The Johns Hopkins University Press: third ed. The Johns Hopkins University Press Maryland · Zbl 0865.65009
[43] Bentbib, A. H.; Guide, M. E.; Jbilou, K., Matrix Krylov subspace methods for image restoration, NTMSCI, 3, 136-148 (2015)
[44] Zhang, L.; Huang, Z. Y.; Liu, W., Weather radar echo prediction method based on convolution neural network and long short-term memory networks for sustainable e-agriculture, J. Clean. Prod., 298, 126776 (2021)
[45] Zhang, L.; Xu, C.; Gao, Y., Improved dota2 lineup recommendation model based on a bidirectional LSTM, Tsinghua Sci. Technol., 25, 712-720 (2020)
[46] Lv, L. L.; Wu, Z. Y.; Zhang, L., An edge-AI based forecasting approach for improving smart microgrid efficiency, IEEE T. Ind. Inform. (2022)
[47] Lv, L. L.; Wu, Z. Y.; Zhang, J. H., A VMD and LSTM based hybrid model of load forecasting for power grid security, IEEE T. Ind. Inform., 18, 6474-6482 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.