×

Melonic dominance and the largest eigenvalue of a large random tensor. (English) Zbl 1509.15004

Summary: We consider a Gaussian rotationally invariant ensemble of random real totally symmetric tensors with independent normally distributed entries, and estimate the largest eigenvalue of a typical tensor in this ensemble by examining the rate of growth of a random initial vector under successive applications of a nonlinear map defined by the random tensor. In the limit of a large number of dimensions, we observe that a simple form of melonic dominance holds, and the quantity we study is effectively determined by a single Feynman diagram arising from the Gaussian average over the tensor components. This computation suggests that the largest tensor eigenvalue in our ensemble in the limit of a large number of dimensions is proportional to the square root of the number of dimensions, as it is for random real symmetric matrices.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15A69 Multilinear algebra, tensor calculus
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)

References:

[1] Mehta, ML, Random Matrices (2004), USA: Academic Press, USA · Zbl 1107.15019
[2] Gurau, R., Random Tensors (2017), Oxford: Oxford University Press, Oxford · Zbl 1371.81007
[3] Qi, L., Eigenvalues of a real supersymmetric tensor, J. Symb. Comp., 40, 1302 (2005) · Zbl 1125.15014 · doi:10.1016/j.jsc.2005.05.007
[4] Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In Proceedings of CAMSAP ’05, vol. 1, p. 129. (2005)
[5] Qi, L.: The spectral theory of tensors (rough version). (2012). arXiv:1201.3424 [math.SP]
[6] Qi, L.; Chen, H.; Chen, Y., Tensor Eigenvalues and Their Applications (2018), New York: Springer, New York · Zbl 1398.15001 · doi:10.1007/978-981-10-8058-6
[7] Dolotin, V., Morozov, A.: Introduction to non-linear algebra (World Scientific, 2007). arXiv:hep-th/0609022 · Zbl 1134.15001
[8] Cartwright, D.; Sturmfels, B., The number of eigenvalues of a tensor, Linear Algebra Appl., 438, 942 (2013) · Zbl 1277.15007 · doi:10.1016/j.laa.2011.05.040
[9] Morozov, A.; Shakirov, SH, Analogue of the identity Log Det = Trace Log for resultants, J. Geom. Phys., 16, 708 (2011) · Zbl 1214.15005 · doi:10.1016/j.geomphys.2010.12.001
[10] Kolda, TG; Bader, BW, Tensor decompositions and applications, SIAM Rev., 51, 455 (2009) · Zbl 1173.65029 · doi:10.1137/07070111X
[11] Comon, P.; Golub, G.; Lim, L-H; Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl., 30, 1254 (2008) · Zbl 1181.15014 · doi:10.1137/060661569
[12] Robeva, E., Orthogonal decomposition of symmetric tensors, SIAM J. Matrix Anal. Appl., 37, 86 (2016) · doi:10.1137/140989340
[13] Auffinger, A.; Ben Arous, G.; Černý, J., Random matrices and complexity of spin glasses, Commun. Pure Appl. Math., 66, 165 (2013) · Zbl 1269.82066 · doi:10.1002/cpa.21422
[14] Cooper, J., Adjacency spectra of random and complete hypergraphs, Linear Algebra Appl., 596, 184 (2020) · Zbl 1435.05150 · doi:10.1016/j.laa.2020.03.013
[15] Bonzom, V.; Gurau, R.; Riello, A.; Rivasseau, V., Critical behavior of colored tensor models in the large N limit, Nucl. Phys. B, 853, 174 (2011) · Zbl 1229.81222 · doi:10.1016/j.nuclphysb.2011.07.022
[16] Gurau, R.; Ryan, JP, Colored tensor models-a review, SIGMA, 8, 020 (2012) · Zbl 1242.05094
[17] Li, G.; Qi, L.; Yu, G., The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Num. Linear Algebra Appl., 20, 1001 (2013) · Zbl 1313.65081 · doi:10.1002/nla.1877
[18] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl. 31 (2009) 1090 · Zbl 1197.65036
[19] Montanari, A., Richard, E.: A statistical model for tensor PCA. In: Advances in Neural Information Processing Systems 27 (NIPS), (2014). arXiv:1411.1076
[20] Rivasseau, V.: Melonic non-linear flows and the spiked tensor model, talk at the mini-symposium Holographic Tensors. OIST, Okinawa (2018). (https://groups.oist.jp/sites/default/files/imce/u1390/RivasseauOIST2018.pdf)
[21] Dartois, S.; Evnin, O.; Lionni, L.; Rivasseau, V.; Valette, G., Melonic turbulence, Commun. Math. Phys., 374, 1179 (2020) · Zbl 1436.81095 · doi:10.1007/s00220-020-03683-7
[22] May, RM, Will a large complex system be stable?, Nature, 238, 413 (1972) · doi:10.1038/238413a0
[23] Ros, V.; Ben Arous, G.; Biroli, G.; Cammarota, C., Complex energy landscapes in spiked-tensor and simple glassy models, Phys. Rev. X, 9, 00110003 (2019)
[24] Cvitanović, P., Group Theory: Birdtracks, Lie’s, and Exceptional Groups (2008), New Jersey: Princeton, New Jersey · Zbl 1152.22001 · doi:10.1515/9781400837670
[25] Vidal, G.: Pedagogical introduction to tensor networks: MPS, PEPS and MERA, talk at the conference Tensor networks for quantum field theories. (2011). https://www.perimeterinstitute.ca/videos/pedagogical-introduction-tensor-networks-mps-peps-and-mera
[26] Xu, C., Zhang, Z.: Random tensors and their normal distributions. arXiv:1908.01131 [math.ST]
[27] Zinn-Justin, J.: Gaussian integrals. In: Path Integrals in Quantum Mechanics. Oxford University Press, Oxford (2004)
[28] Makeenko, Y., Methods of Contemporary Gauge Theory (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1088.81004 · doi:10.1017/CBO9780511535147
[29] Tao, T.; Vu, V., Random matrices: the four moment theorem for Wigner ensembles, Random Matrix Theory, Interacting Particle Systems and Integrable Systems (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1327.15075
[30] Gurau, R., Universality for random tensors, Ann. H. Poincaré Probab. Stat., 50, 1474 (2014) · Zbl 1318.60010
[31] Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, (2000) 111 arXiv:math-ph/9910005; Characteristic polynomials of random matrices at edge singularities. Phys. Rev. E 62, (2000) 3558 arXiv:math-ph/0004018 · Zbl 1042.82017
[32] Gurau, R.: On the generalization of the Wigner semicircle law to real symmetric tensors. arXiv:2004.02660
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.