×

Derivation Lie algebras of new \(k\)-th local algebras of isolated hypersurface singularities. (English) Zbl 1509.14007

Summary: Let \((V,0)=\{(z_1,\ldots,z_n) \in \mathbb{C}^n : f(z_1,\ldots,z_n)=0\}\) be an isolated hypersurface singularity with \(\operatorname{mult}(f)=m\). Let \(J_k(f)\) be the ideal generated by all \(k\)-th order partial derivative of \(f\). For \(1 \leq k\leq m-1\), the new object \(\mathcal{L}_k (V)\) is defined to be the Lie algebra of derivations of the new \(k\)-th local algebra \(M_k(V)\), where \(M_k(V):=\mathcal{O}_n/(f+J_1(f)+\cdots+J_k(f))\). Its dimension is denoted as \(\delta_k (V )\). This number \(\delta_k (V )\) is a new numerical analytic invariant. We compute \(\mathcal{L}_3 (V)\) for fewnomial isolated singularities (binomial, trinomial) and obtain the formulas of \(\delta_3 (V)\). We also formulate a sharp upper estimate conjecture for the \(\delta_k (V)\) of weighted homogeneous isolated hypersurface singularities and verify this conjecture for large class of singularities. Furthermore, we formulate another inequality conjecture: \( \delta_{(k+1)}(V) < \delta_k(V)\), \(k\geq1\) and verify it for low-dimensional fewnomial singularities.

MSC:

14B05 Singularities in algebraic geometry
32S05 Local complex singularities
17B66 Lie algebras of vector fields and related (super) algebras
32S25 Complex surface and hypersurface singularities
Full Text: DOI

References:

[1] ; Aleksandrov, Beiträge Algebra Geom., 115 (1992)
[2] ; Arnold, Singularities of differentiable maps. Monographs in Mathematics, 82 (1985) · Zbl 0554.58001
[3] 10.2969/aspm/00810003 · doi:10.2969/aspm/00810003
[4] 10.2307/1970745 · Zbl 0216.07303 · doi:10.2307/1970745
[5] ; Brieskorn, Actes du Congrès International des Mathématiciens, 279 (1971)
[6] 10.1007/BF01460981 · Zbl 0836.32015 · doi:10.1007/BF01460981
[7] 10.1006/jabr.1998.7750 · Zbl 0952.13006 · doi:10.1006/jabr.1998.7750
[8] 10.1016/S0021-8693(05)80001-8 · Zbl 0839.32015 · doi:10.1016/S0021-8693(05)80001-8
[9] 10.1090/tran/7628 · Zbl 1440.14013 · doi:10.1090/tran/7628
[10] 10.4310/jdg/1589853625 · Zbl 1451.13071 · doi:10.4310/jdg/1589853625
[11] 10.4310/jdg/1594260016 · Zbl 1454.14007 · doi:10.4310/jdg/1594260016
[12] ; Dimca, Doc. Math., 20, 689 (2015) · Zbl 1342.14093
[13] 10.1112/S0010437X11005288 · Zbl 1238.14029 · doi:10.1112/S0010437X11005288
[14] ; Elashvili, J. Lie Theory, 16, 621 (2006) · Zbl 1120.32016
[15] ; Hu, Differential geometry, Calabi-Yau theory, and general relativity. Surveys in Differential Geometry, 23, 213 (2018)
[16] 10.1017/S0004972718000266 · Zbl 1403.32017 · doi:10.1017/S0004972718000266
[17] 10.2140/pjm.2020.305.189 · Zbl 1444.14009 · doi:10.2140/pjm.2020.305.189
[18] 10.1007/s00209-019-02269-x · Zbl 1456.14005 · doi:10.1007/s00209-019-02269-x
[19] 10.1007/s00209-020-02688-1 · Zbl 1467.32014 · doi:10.1007/s00209-020-02688-1
[20] 10.1017/s1446788719000132 · doi:10.1017/s1446788719000132
[21] 10.1007/s10468-020-09981-x · Zbl 1467.14010 · doi:10.1007/s10468-020-09981-x
[22] 10.1007/s10711-020-00549-z · Zbl 1464.14007 · doi:10.1007/s10711-020-00549-z
[23] 10.1090/mmono/088 · doi:10.1090/mmono/088
[24] 10.1016/j.jalgebra.2020.07.023 · Zbl 1449.14004 · doi:10.1016/j.jalgebra.2020.07.023
[25] 10.1007/BF01399504 · Zbl 0499.32008 · doi:10.1007/BF01399504
[26] 10.2307/2046874 · Zbl 0656.32009 · doi:10.2307/2046874
[27] 10.1007/BF01234430 · Zbl 0666.14002 · doi:10.1007/BF01234430
[28] 10.1353/ajm.1996.0020 · Zbl 0927.32022 · doi:10.1353/ajm.1996.0020
[29] 10.1073/pnas.80.24.7694 · Zbl 0563.17010 · doi:10.1073/pnas.80.24.7694
[30] 10.1007/BF01162338 · Zbl 0589.17012 · doi:10.1007/BF01162338
[31] 10.2307/2374785 · Zbl 0747.17012 · doi:10.2307/2374785
[32] 10.1016/j.jalgebra.2016.03.003 · Zbl 1343.32021 · doi:10.1016/j.jalgebra.2016.03.003
[33] 10.4310/PAMQ.2016.v12.n1.a6 · Zbl 1453.32034 · doi:10.4310/PAMQ.2016.v12.n1.a6
[34] 10.1090/S0002-9947-96-01633-9 · Zbl 0872.17002 · doi:10.1090/S0002-9947-96-01633-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.