×

A new generalization of the minimal excludant arising from an analogue of Franklin’s identity. (English) Zbl 1509.05029

Summary: Euler’s classical identity states that the number of partitions of an integer into odd parts and distinct parts are equinumerous. F. Franklin [J. Hopkins circ. II. 72 (1883; JFM 15.0131.04)] gave a generalization by considering partitions with exactly \(j\) different multiples of \(r\), for a positive integer \(r\). We prove an analogue of Franklin’s identity by studying the number of partitions with \(j\) multiples of \(r\) in total and in the process, discover a natural generalization of the minimal excludant (mex) which we call the \(r\)-chain mex. Further, we derive the generating function for \(\sigma_{r c} \mathrm{mex}(n)\), the sum of \(r\)-chain mex taken over all partitions of \(n\), thereby deducing a combinatorial identity for \(\sigma_{r c} \mathrm{mex}(n)\), which neatly generalizes the result of G. E. Andrews and D. Newman [Ann. Comb. 23, No. 2, 249–254 (2019; Zbl 1458.11011); J. Integer Seq. 23, No. 2, Article 20.2.3, 11 p. (2020; Zbl 1441.11265)] for \(\sigma \mathrm{mex}(n)\), the sum of mex over all partitions of \(n\).

MSC:

05A19 Combinatorial identities, bijective combinatorics
05A17 Combinatorial aspects of partitions of integers
11P81 Elementary theory of partitions
11P83 Partitions; congruences and congruential restrictions

Software:

OEIS

References:

[1] Alladi, K., Euler’s partition theorem and refinements without appeal to infinite products, (Pillwein, V.; Schneider, C., Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra. Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra, Texts & Monographs in Symbolic Computation (2020), Springer: Springer Cham), 9-23 · Zbl 07293156
[2] Andrews, G. E., The Theory of Partitions (1998), Addison-Wesley Pub. Co.: Addison-Wesley Pub. Co. NY: Cambridge University Press: Addison-Wesley Pub. Co.: Addison-Wesley Pub. Co. NY: Cambridge University Press New York, 300 pp. Reissued · Zbl 0996.11002
[3] Andrews, G. E., Euler’s partition identity and two problems of George Beck, Math. Stud., 86, 1-2, 115-119 (2017) · Zbl 1535.11142
[4] Andrews, G. E.; Merca, M., On the number of even parts in all partitions of n into distinct parts, Ann. Comb., 24, 47-54 (2020) · Zbl 1473.11190
[5] Andrews, G. E.; Newman, D., Partitions and the minimal excludant, Ann. Comb., 23, 2, 249-254 (2019) · Zbl 1458.11011
[6] Andrews, G. E.; Newman, D., The minimal excludant in integer partitions, J. Integer Seq., 23, Article 20.2.3 pp. (2020) · Zbl 1441.11265
[7] Ballantine, C.; Merca, M., Bisected theta series, least r-gaps in partitions, and polygonal numbers, Ramanujan J., 52, 433-444 (2020) · Zbl 1439.05023
[8] Ballantine, C.; Merca, M., Combinatorial proof of the minimal excludant theorem, Int. J. Number Theory, 17, 08, 1765-1779 (2021) · Zbl 1494.11080
[9] Ballantine, C.; Welch, A., Beck-type companion identities for Franklin’s identity via a modular refinement, Discrete Math., 344, 8, Article 112480 pp. (2021) · Zbl 1482.05016
[10] Beck, G., The on-line encyclopedia of integer sequences, Sequence A090867
[11] Chern, S., Partitions and the maximal excludant, Electron. J. Comb., 28, 3, Article P3.13 pp. (2021) · Zbl 1467.05018
[12] da Silva, R.; Sellers, J. A., Parity considerations for mex-related partition functions of Andrews and Newman, J. Integer Seq., 23, 5, Article 20.5.7 pp. (2020) · Zbl 1480.11131
[13] Dhar, A.; Mukhopadhyay, A.; Sarma, R., New relations of the mex with other partition statistics
[14] Fine, N. J., Basic Hypergeometric Series and Applications, Math. Surveys and Monographs, vol. 27 (1988), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 0647.05004
[15] Franklin, F., On partitions, Johns Hopkins Univ. Circ., 2, 72 (1883) · JFM 15.0131.04
[16] Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications (2004) · Zbl 1129.33005
[17] Grabner, P. J.; Knopfmacher, A., Analysis of some partition statistics, Ramanujan J., 12, 439-454 (2006) · Zbl 1113.05012
[18] Hopkins, B.; Sellers, J. A.; Stanton, D., Dyson’s Crank and the mex of integers partitions, J. Comb. Theory, Ser. A, 185, Article 105523 pp. (2022) · Zbl 1476.05016
[19] Hopkins, B.; Sellers, J. A.; Yee, A. J., Combinatorial perspectives on the Crank and mex partition statistics, Electron. J. Comb., 29, 2, Article P2.11 pp. (2022) · Zbl 1523.11183
[20] Kaur, P. S.; Bhoria, S. C.; Eyyunni, P.; Maji, B., Minimal excludant over partitions into distinct parts, Int. J. Number Theory, 18, 9, 2015-2028 (2022) · Zbl 1498.11206
[21] Konan, I., A bijective proof and generalization of the non-negative Crank-odd mex inequality
[22] Sills, A., An Invitation to the Rogers-Ramanujan Identities (2018), CRC Press · Zbl 1429.11002
[23] Sylvester, J. J., A constructive theory of partitions arranged in three acts, an interact and an exodion, Am. J. Math., 5, 251-330 (1882) · JFM 15.0129.02
[24] Yang, Jane Y. X., Combinatorial proofs and generalizations of conjectures related to Euler’s partition theorem, Eur. J. Comb., 76, 62-72 (2019) · Zbl 1402.05011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.