×

Non-standard linear recurring sequence subgroups in finite fields and automorphisms of cyclic codes. I. (English) Zbl 1508.94090

Summary: A pair \((n, q)\) with \(q\) a prime power and \(n\) a positive integer for which \(\gcd(n, q) = 1\) is non-standard if one of the following properties holds, which we will show to be equivalent.
\(-\) The group \(\mathcal{U}_{n , q}\) of \(n\)-th roots-of-unity in the splitting field \(\mathbb{F}_{q^m}\) of \(x^n - 1\) over \(\mathbb{F}_q\) is fixed set-wise by an \(\mathbb{F}_q\)-linear map on \(\mathbb{F}_{q^m}\) that is not of the form \(x \longrightarrow \alpha x^{q^j}\).
\(-\) There is a non-cyclic linear recurring sequence \(\mathbf{s}\) of period \(n\) (so with \(\mathbf{s}\) not of the form \(s_i = \alpha \xi^i\) for \(i \geq 0\)) with associated characteristic polynomial being irreducible over \(\mathbb{F}_q\), such that \(\mathcal{U}_{n , q} = \{ s_0, \ldots, s_{n - 1} \} \). In that case, the group \(\mathcal{U}_{n , q}\) is called non-standard by Brison and Nogueira, who studied this phenomenon in a sequence of papers.
\(-\) A \(q\)-ary irreducible cyclic code of length \(n\) has “extra” permutation automorphisms (some well-known examples are the (duals of the) Golay codes and binary simplex codes for \(n \geq 7\)). We will refer to such codes as non-standard irreducible cyclic codes or NSIC-codes.
We first investigate non-standard linear recurring sequence subgroups and establish the equivalence between the first and second of the above properties. Then we investigate permutation automorphisms of general (repeated-root) cyclic codes and irreducible cyclic codes and establish the equivalence between the first and third of these properties. We also introduce a notion of non-standardness for general cyclic codes, and relate it to our earlier definition of NSIC-codes. This paper is the first part of an expanded version of the arXiv paper [arXiv:0807.0595].

MSC:

94B15 Cyclic codes
11B37 Recurrences
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
20K27 Subgroups of abelian groups
Full Text: DOI

References:

[1] Berger, T. P.; Charpin, P., The automorphism group of Generalized Reed-Muller codes, Discrete Math., 117, 1-17 (1993) · Zbl 0777.94014
[2] Berger, T. P.; Charpin, P., The permutation group of affine-invariant extended cyclic codes, IEEE Trans. Inf. Theory, 42, 6, 2194-2209 (1996) · Zbl 0883.94012
[3] Berger, T. P.; Charpin, P., The permutation group of BCH codes and of some affine-invariant codes over extension fields, Des. Codes Cryptogr., 18, 29-53 (1999) · Zbl 0957.94031
[4] Betten, A., Twisted tensor product codes, Des. Codes Cryptogr., 47, 191-219 (2008) · Zbl 1184.94270
[5] Betten, A.; Braun, M.; Fripertinger, H.; Kerber, A.; Kohnert, A.; Wassermann, A., Error-Correcting Linear Codes, Classification by Isometry and Applications (2006), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1102.94001
[6] Bienert, R.; Klopsch, B., Automorphism groups of cyclic codes, J. Algebraic Comb., 31, 33-52 (2010) · Zbl 1195.94083
[7] Bierbrauer, J., Introduction to Coding Theory (2017), CRC Press · Zbl 1416.94002
[8] Bramley, J. V.; Carlitz, L.; Vaughan, T., Linear permutation polynomials with coefficients in a subfield, Acta Arith., XXIV, 193-199 (1973) · Zbl 0244.12016
[9] Brison, O. J.; Nogueira, J. E., Linear recurring sequence subgroups in finite fields, Finite Fields Appl., 9, 413-422 (2003) · Zbl 1088.11090
[10] Brison, Owen J.; Nogueira, J. Eurico, Linear recurring sequence subgroups in the complex field, Fibonacci Q., 41, 5, 397-404 (2003) · Zbl 1055.11008
[11] Brison, O. J.; Nogueira, J. E., Second order linear sequence subgroups in finite fields, Finite Fields Appl., 14, 277-290 (2008) · Zbl 1136.11009
[12] Brison, O. J.; Nogueira, J. E., Second order linear sequence subgroups in finite fields-II, Finite Fields Appl., 15, 40-53 (2009) · Zbl 1213.11194
[13] Brison, O. J.; Nogueira, J. E., Non-standard sequence subgroups in finite fields, Finite Fields Appl., 16, 187-203 (2010) · Zbl 1195.11157
[14] Brison, O. J.; Nogueira, J. E., Standard sequence subgroups in finite fields, Finite Fields Appl., 25, 326-340 (2014) · Zbl 1355.11107
[15] Brison, Owen J.; Nogueira, J. Eurico, Linear recurring sequence subgroups in the complex field - II, Fibonacci Q., 57, 2, 148-154 (2019) · Zbl 1458.11023
[16] Brison, O. J.; Nogueira, J. E., Sequence subgroups generated by lifting, Finite Fields Appl., 73, Article 101860 pp. (August 2021) · Zbl 1468.11233
[17] Charpin, P., Open problems on cyclic codes, (Pless, V. S.; Huffman, W. C.; Brualdi, R. A., Handbook of Coding Theory, I (1998), Elsevier: Elsevier Amsterdam), 963-1063 · Zbl 0927.94017
[18] Constantinescu, I.; Heise, W., On the concept of code-isomorphy, J. Geom., 63-69 (1996) · Zbl 0924.94032
[19] Dür, A., The automorphism groups of Reed-Solomon codes, J. Comb. Theory, Ser. A, 44, 69-82 (1987) · Zbl 0621.94010
[20] Dyshko, S., Generalizations of the MacWilliams Extension Theorem (2016), Université de Toulon, doctoral thesis
[21] Fillmore, J. P.; Marx, M. L., Linear recursive sequences, SIAM Rev., 10, 3, 342-352 (1968) · Zbl 0169.51004
[22] Fripertinger, H., Enumeration of the semilinear isometry classes of linear codes, Bayreuth. Math. Schr., 74, 100-122 (2005) · Zbl 1098.94038
[23] Gow, R.; Quinlan, R., Galois theory and linear algebra, Linear Algebra Appl., 430, 1778-1789 (2009) · Zbl 1191.12001
[24] Gnilke, O. W.; Greferath, M.; Honold, T.; Wood, J. A.; Zumbrägel, J., The extension theorem for bi-invariant weights over Frobenius rings and Frobenius bimodules, (Leroy, A.; Lomp, C.; López-Permouth, S.; Oggier, F., Rings, Modules and Codes. Rings, Modules and Codes, American Mathematical Society. Contemporary Mathematics, vol. 727 (2019)), 117-129 · Zbl 1429.94083
[25] Guenda, K.; Gulliver, T. A., On the permutation groups of cyclic codes, J. Algebraic Comb., 38, 1, 197-208 (2013) · Zbl 1273.94405
[26] Guenda, K.; Gulliver, T. A., On the equivalence of cyclic and quasi-cyclic codes over finite fields, J. Algebra Comb. Discr. Struc. Appl., 4, 3, 261-269 (2017) · Zbl 1423.94148
[27] Hirschfeld, J. W.P., Projective Geometries over Finite Fields (1998), Oxford University Press: Oxford University Press Oxford · Zbl 0899.51002
[28] Hollmann, H. D.L., Non-standard linear recurring sequence subgroups in finite fields and automorphisms of cyclic codes (July 2008)
[29] Hollmann, H. D.L.; Zhanbulatuly, M., Some basic results on finite linear recurring sequence subgroups, Finite Fields Appl., 73, Article 101844 pp. (2021) · Zbl 1468.11044
[30] Hollmann, H. D.L., Non-standard linear recurring sequence subgroups and automorphisms of irreducible cyclic codes, (IEEE International Symposium on Information Theory (ISIT). IEEE International Symposium on Information Theory (ISIT), Helsinki (2022))
[31] H.D.L. Hollmann, Non-standard linear recurring sequence subgroups in finite fields and automorphisms of cyclic codes II, to be submitted.
[32] H.D.L. Hollmann, Non-standard linear recurring sequence subgroups in finite fields and automorphisms of cyclic codes III, to be submitted.
[33] Huffman, W. C., The automorphism groups of generalized quadratic residue codes, IEEE Trans. Inf. Theory, 41, 2, 378-386 (1995) · Zbl 0828.94017
[34] Huffman, W. C., Codes and groups, (Pless, V. S.; Huffman, W. C.; Brualdi, R. A., Handbook of Coding Theory, II (1998), Elsevier: Elsevier Amsterdam), 1345-1440 · Zbl 0926.94039
[35] Huffman, W. C.; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge University Press · Zbl 1099.94030
[36] Kaski, Petteri; Östergård, Patric R. J., Classification Algorithms for Codes and Designs (2006), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1089.05001
[37] Knapp, W.; Schmid, P., Codes with prescribed permutation group, J. Algebra, 67, 415-435 (1980) · Zbl 0452.94019
[38] Laksov, D., Linear recurring sequences over finite fields, Math. Scand., 16, 181-196 (1965) · Zbl 0151.01502
[39] Liebeck, M. W.; Praeger, C. E.; Saxl, J., The classification of 3/2-transitive permutation groups and 1/2-transitive linear groups, Proc. Amer. Math. Soc., 147, 12:1, 5023-5037 (2019) · Zbl 1468.20004
[40] Lidl, R.; Niederreiter, H., Finite Fields (1997), Cambridge University Press
[41] van Lint, J. H., Introduction to Coding Theory, Graduate Texts in Mathematics, vol. 86 (1992), Springer-Verlag · Zbl 0747.94018
[42] MacWilliams, F. J.; Sloane, N. J.A., The Theory of Error-Correcting Codes (1983), North Holland · Zbl 0369.94008
[43] McEliece, R. J., Linear Recurring Sequences over Finite Fields (1967), California Institute of Technology, PhD thesis
[44] Passman, D. S., Permutation Groups (1968), W.A. Benjamin: W.A. Benjamin New York · Zbl 0179.04405
[45] Robinson, D. J.S., An Introduction to Abstract Algebra, 255-257 (2003), Walter de Gruyter · Zbl 1010.00001
[46] Sobhani, R., Matrix-product structure of repeated-root cyclic codes over finite fields, Finite Fields Appl., 39, 216-232 (2016) · Zbl 1339.94091
[47] Weil, A., Basic Number Theory (1995), Springer-Verlag Berlin Heidelberg · Zbl 0823.11001
[48] Zierler, N., Linear recurring sequences, J. Soc. Ind. Appl. Math., 7, 1, 31-48 (1959) · Zbl 0096.33804
[49] Zimmermann, K.-H., On generalizations of repeated-root cyclic codes, IEEE Trans. Inf. Theory, 42: 2, 641-649 (1996) · Zbl 0858.94023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.