×

Comparison of cell state models derived from single-cell RNA sequencing data: graph versus multi-dimensional space. (English) Zbl 1508.92076


MSC:

92C37 Cell biology
92D20 Protein sequences, DNA sequences
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] V, Exponential scaling of single-cell RNA-seq in the past decade, Nat. Protoc., 13, 599-604 (2018) · doi:10.1038/nprot.2017.149
[2] G, Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049 (2017) · doi:10.1038/ncomms14049
[3] T. Stuart, R. Satija, Integrative single-cell analysis, Nat. Rev. Genet., 20 (2019), 257-272. http://www.nature.com/articles/s41576-019-0093-7
[4] W, A comparison of single-cell trajectory inference methods: towards more accurate and robust tools, Nat. Biotechn., 37, 547-554 (2019) · doi:10.1038/s41587-019-0071-9
[5] V, Challenges in unsupervised clustering of single-cell RNA-seq data, Nat. Rev. Genet., 20, 273-282 (2019) · doi:10.1038/s41576-018-0088-9
[6] R, Transition state characteristics during cell differentiation, PLoS Comput. Biol., 14, e1006405 (2018) · doi:10.1371/journal.pcbi.1006405
[7] E, Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape, Proc. Nat. Academy Sci., 111, E5643-E5650 (2014) · doi:10.1073/pnas.1408993111
[8] A, Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome, Nat. Commun., 8, 15599 (2017) · doi:10.1038/ncomms15599
[9] S, ScEpath: Energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data, Bioinformatics, 34, 2077-2086 (2018) · doi:10.1093/bioinformatics/bty058
[10] J, HopLand: Single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington’s epigenetic landscape, Bioinformatics, 33, i102-i109 (2017) · doi:10.1093/bioinformatics/btx232
[11] M. Zwiessele, N. D. Lawrence, Topslam: Waddington Landscape Recovery for Single Cell Experiments, preprint, BioRxiv, 2017: 057778. https://doi.org/10.1101/057778
[12] H, Modeling acute myeloid leukemia in a continuum of differentiation states, Lett. Biomath., 5, S69-S98 (2018)
[13] S, A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation, Blood, 128, 20-32 (2016) · doi:10.1182/blood-2016-05-716480
[14] F, Transcriptional heterogeneity and lineage commitment in myeloid progenitors, Cell, 163, 1663-1677 (2015) · doi:10.1016/j.cell.2015.11.013
[15] L, Diffusion maps for high-dimensional single-cell analysis of differentiation data, Bioinformatics, 31, 2989-2998 (2015) · doi:10.1093/bioinformatics/btv325
[16] M, Identifying and removing the cell-cycle effect from single-cell rna-sequencing data, Sci. Rep., 6, 33892 (2016) · doi:10.1038/srep33892
[17] J, Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations, Proc. Nat. Acad. Sci., 105, 12271-12276 (2008) · doi:10.1073/pnas.0800579105
[18] Z, The generalized cross entropy method, with applications to probability density estimation, Methodol. Comput. Appl. Probab., 13, 1-27 (2011) · Zbl 1207.94041 · doi:10.1007/s11009-009-9133-7
[19] M, A structured population model of cell differentiation, SIAM J. Appl. Math., 71, 1918-1940 (2011) · Zbl 1235.35030 · doi:10.1137/100816584
[20] C, Fundamental limits on dynamic inference from single-cell snapshots, Proc. Nat. Acad. Sci., 115, E2467-E2476 (2018) · doi:10.1073/pnas.1714723115
[21] G, Generative modeling of single-cell time series with prescient enables prediction of cell trajectories with interventions, Nat. Commun., 12, 3222 (2021) · doi:10.1038/s41467-021-23518-w
[22] L. C. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, 2014.
[23] F, PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells, Genome Biol., 20, 59 (2019) · doi:10.1186/s13059-019-1663-x
[24] L. C. Evans, Partial Differential Equations, 2nd edition, American Mathematical Society, 2010. · Zbl 1194.35001
[25] R, State-transition analysis of time-sequential gene expression identifies critical points that predict development of acute myeloid leukemia, Cancer Res., 80, 3157-3169 (2020) · doi:10.1158/0008-5472.CAN-20-0354
[26] A. W. Bowman, A. Azzalini, Applied Smoothing Techniques for Data Analysis, Oxford University Press Inc., New York, 1997. · Zbl 0889.62027
[27] Q, Cbf \(\beta \)-smmhc creates aberrant megakaryocyte-erythroid progenitors prone to leukemia initiation in mice, Blood, 128, 1503-1515 (2016) · doi:10.1182/blood-2016-01-693119
[28] P, Fusion between transcription factor cbf beta/pebp2 beta and a myosin heavy chain in acute myeloid leukemia, Science, 261, 1041-1044 (1993) · doi:10.1126/science.8351518
[29] P, Identification of the chimeric protein product of the cbfb-myh11 fusion gene in inv(16) leukemia cells, Genes Chromosomes Cancer, 16, 77-87 (1996) · doi:10.1002/(SICI)1098-2264(199606)16:2<77::AID-GCC1>3.0.CO;2-%23
[30] L, The fusion gene cbfb-myh11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia, Nat. Genet., 23, 144-146 (1999) · doi:10.1038/13776
[31] Y, Cbf \(\beta \)-smmhc induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia, Cancer Cell, 9, 57-68 (2006) · doi:10.1016/j.ccr.2005.12.014
[32] Y, Cbf \(\beta \)-smmhc impairs differentiation of common lymphoid progenitors and reveals an essential role for runx in early b-cell development, Blood, 111, 1543-1551 (2008) · doi:10.1182/blood-2007-07-104422
[33] C, Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy, Cell Stem Cell, 1, 428-442 (2007) · doi:10.1016/j.stem.2007.07.005
[34] K, A clonogenic common myeloid progenitor that gives rise to all myeloid lineages, Nature, 404, 193-197 (2000) · doi:10.1038/35004599
[35] S, A 17-gene stemness score for rapid determination of risk in acute leukaemia, Nature, 540, 433-437 (2016) · doi:10.1038/nature20598
[36] C, GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo, Blood, 127, 2018-2027 (2017) · doi:10.1182/blood-2015-11-683649
[37] T, CancerInSilico: An R/Bioconductor package for combining mathematical and statistical modeling to simulate time course bulk and single cell gene expression data in cancer, PLOS Comput. Biol., 14, e1006935 (2019) · doi:10.1371/journal.pcbi.1006935
[38] M, Leveraging single cell RNA sequencing experiments to model intra-tumor heterogeneity, Clin. Cancer Inf., 3, 1-10 (2019) · doi:10.1200/CCI.18.00074
[39] E, Single-cell RNA sequencing to explore immune cell heterogeneity, Nat. Rev. Immunol., 18, 35-45 (2018) · doi:10.1038/nri.2017.76
[40] G, Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming, Cell, 176, 928-943 (2019) · doi:10.1016/j.cell.2019.01.006
[41] G, Reconstructing developmental landscapes and trajectories from single-cell data, Curr. Opin. Syst. Biol., 27, 100351 (2021) · doi:10.1016/j.coisb.2021.06.002
[42] M, Characterization of cell fate probabilities in single-cell data with Palantir, Nat. Biotechnol., 37, 451-460 (2019) · doi:10.1038/s41587-019-0068-4
[43] S, Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements, Cell Syst., 3, 419-433 (2016) · doi:10.1016/j.cels.2016.10.015
[44] D, Inferring population dynamics from single-cell RNA-sequencing time series data, Nat. Biotechnol., 37, 461-468 (2019) · doi:10.1038/s41587-019-0088-0
[45] Q, Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data, PLOS Comput. Biol., 18, e1009821 (2022) · doi:10.1371/journal.pcbi.1009821
[46] A. Sharma, E. Y. Cao, V. Kumar, X. Zhang, H. S. Leong, A. M. L. Wong, et al., Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy, Nat. Commun., https://doi.org/10.1038/s41467-018-07261-3.
[47] M, Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq, Nat. Commun., 9, 3588 (2018) · doi:10.1038/s41467-018-06052-0
[48] G, RNA velocity of single cells, Nature, 560, 494-498 (2018) · doi:10.1038/s41586-018-0414-6
[49] G. Eraslan, Ž. Avsec, J. Gagneur, F. J. Theis, Deep learning : new computational modelling techniques for genomics, Nat. Rev. Genet., 20 (2019). https://doi.org/10.1038/s41576-019-0122-6
[50] N, Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI, Sci. Rep., 9, 10063 (2019) · doi:10.1038/s41598-019-46296-4
[51] R, The 2019 mathematical oncology roadmap, Phys. Biol., 16, 4 (2019) · doi:10.1088/1478-3975/ab1a09
[52] X, Mapping transcriptomic vector fields of single cells, Cell, 185, 690-711 (2022) · doi:10.1016/j.cell.2021.12.045
[53] S, Comprehensive evaluation of noise reduction methods for single-cell rna sequencing data, Briefings Bioinf., 23, bbab565 (2022) · doi:10.1093/bib/bbab565
[54] M, Cell fate decision as high-dimensional critical state transition, PLoS Biol., 14, 1-28 (2016) · doi:10.1371/journal.pbio.2000640
[55] C, Landscape reveals critical network structures for sharpening gene expression boundaries, BMC Syst. Biol., 12, 67 (2018) · doi:10.1186/s12918-018-0595-5
[56] J, Determining relative dynamic stability of cell states using boolean network model, Sci. Rep., 8, 12077 (2018) · doi:10.1038/s41598-018-30544-0
[57] B, Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths, Exp. Hematol., 32, 1040-1050 (2004) · doi:10.1016/j.exphem.2004.07.023
[58] E, Kinetics of granulopoiesis, Clin. Haematol., 8, 351-370 (1979)
[59] S, Cell cycle regulation of hematopoietic stem or progenitor cells, Int. J. Hematol., 103, 487-497 (2016) · doi:10.1007/s12185-016-1984-4
[60] E, Cell cycle regulation in hematopoietic stem cells, J. Cell Biol., 195, 709-720 (2011) · doi:10.1083/jcb.201102131
[61] T, The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling, Bone Marrow Transp., 49, 30-37 (2014) · doi:10.1038/bmt.2013.138
[62] R, Geometric diffusions as a tool for harmonic analysis and structure definition of data : Diffusion maps, Proc. Natl. Acad. Sci., 102, 7426-7431 (2005) · Zbl 1405.42043 · doi:10.1073/pnas.0500334102
[63] L, Diffusion pseudotime robustly reconstructs lineage branching, Nat. Methods, 13, 845-848 (2016) · doi:10.1038/nmeth.3971
[64] M, Bastian, Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software, PLOS One, 9, e98679 (2014) · doi:10.1371/journal.pone.0098679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.