×

Multiple curve Lévy forward price model allowing for negative interest rates. (English) Zbl 1508.91578

Summary: In this paper, we develop a framework for discretely compounding interest rates that is based on the forward price process approach. This approach has a number of advantages, in particular in the current market environment. Compared to the classical as well as the Lévy Libor market model, it allows in a natural way for negative interest rates and has superb calibration properties even in the presence of extremely low rates. Moreover, the measure changes along the tenor structure are significantly simplified. These properties make it an excellent base for a postcrisis multiple curve setup. Two variants for multiple curve constructions based on the multiplicative spreads are discussed. Time-inhomogeneous Lévy processes are used as driving processes. An explicit formula for the valuation of caps is derived using Fourier transform techniques. Relying on the valuation formula, we calibrate the two model variants to market data.

MSC:

91G30 Interest rates, asset pricing, etc. (stochastic models)
60G51 Processes with independent increments; Lévy processes

References:

[1] Ametrano, F. M., & Bianchetti, M. (2013). Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask. SSRN Electronic Journal, April 2013. https://doi.org/10.2139/ssrn.2219548 · doi:10.2139/ssrn.2219548
[2] Beinhofer, M., Eberlein, E., Janssen, A., & Polley, M. (2011). Correlations in Lévy interest rate models. Quantitative Finance, 11(9), 1315-1327. · Zbl 1277.91178
[3] Bianchetti, M. (2010). Two curves, one price. Risk, 23(8), 66.
[4] Bianchetti, M., & Morini, M. (2013). Interest rate modelling after the financial crisis. New York, NY: Risk books.
[5] Brigo, D., & Mercurio, F. (2006). Interest rate models ‐ theory and practice: With smile, inflation and credit (2nd ed.). Berlin-Heidelberg: Springer. · Zbl 1109.91023
[6] Crépey, S., Grbac, Z., & Nguyen, H.‐N. (2012). A multiple‐curve HJM model of interbank risk. Mathematics and Financial Economics, 6(3), 155-190. · Zbl 1264.91131
[7] Crépey, S., Macrina, A., Nguyen, T. M., & Skovmand, D. (2016). Rational multi‐curve models with counterparty‐risk valuation adjustments. Quantitative Finance, 16(6), 847-866. · Zbl 1468.91180
[8] Cuchiero, C., Fontana, C., & Gnoatto, A. (2016). General HJM framework for multiple yield curve modeling. Finance and Stochastics, 20(2), 267-320. · Zbl 1376.91166
[9] Cuchiero, C., Fontana, C., & Gnoatto, A. (2018). Affine multiple yield curve models. Mathematical Finance. https://doi.org/10.1111/mafi.12183. · Zbl 1411.91589 · doi:10.1111/mafi.12183
[10] Eberlein, E. (2009). Jump‐type Lévy processes. In T. G.Andersen (ed.), R. A.Davis (ed.), J.‐P.Kreiss (ed.), & Th. V.Mikosch (ed.) (Eds.), Handbook of financial time series (pp. 439-455). Berlin-Heidelberg: Springer. · Zbl 1186.60042
[11] Eberlein, E., Eddahbi, M. & Lalaoui Ben Cherif, S. M. (2016). Option pricing and sensitivity analysis in the Lévy forward process model. In K.Glau (ed.), Z.Grbac (ed.), M.Scherer (ed.), & R.Zagst (ed.) (Eds.), Innovations in derivatives markets (pp. 285-313). New York, NY: Springer. · Zbl 1398.91670
[12] Eberlein, E., & Gerhart, C. (2018). A multiple‐curve Lévy forward rate model in a two‐price economy. Quantitative Finance, 18(4), 537-561. · Zbl 1400.91586
[13] Eberlein, E., Glau, K., & Papapantoleon, A. (2010). Analysis of Fourier transform valuation formulas and applications. Applied Mathematical Finance, 17(3), 211-240. · Zbl 1233.91267
[14] Eberlein, E., Jacod, J., & Raible, S. (2005). Lévy term structure models: No‐arbitrage and completeness. Finance and Stochastics, 9(1), 67-88. · Zbl 1065.60086
[15] Eberlein, E., & Özkan, F. (2005). The Lévy Libor model. Finance and Stochastics, 9(3), 327-348. · Zbl 1088.60074
[16] Eberlein, E., & Raible, S. (1999). Term structure models driven by general Lévy processes. Mathematical Finance, 9(1), 31-53. · Zbl 0980.91020
[17] Filipović, D., & Trolle, A. B. (2013). The term structure of interbank risk. Journal of Financial Economics, 109(3), 707-733.
[18] Fontana, C., Grbac, Z., Gümbel, S., & Schmidt, T. (2018). Term structure modeling for multiple curves with stochastic discontinuities. Preprint, arxiv.org/abs/1810.09882.
[19] Gerhart, C., & Lütkebohmert, E. (2018). Empirical analysis and forecasting of multiple yield curves. SSRN Electronic Journal. https://doi/org/10.2139/ssrn.3311998. · doi:10.2139/ssrn.3311998
[20] Grbac, Z., Papapantoleon, A., Schoenmakers, J., & Skovmand, D. (2015). Affine LIBOR models with multiple curves: Theory, examples and calibration. SIAM Journal on Financial Mathematics, 6(1), 984-1025. · Zbl 1338.91143
[21] Grbac, Z., & Runggaldier, W. J. (2015). Interest rate modeling: Post‐crisis challenges and approaches. New York, NY: Springer. · Zbl 1418.91553
[22] Henrard, M. (2010). The irony in derivatives discounting part II: The crisis. Wilmott Journal, 2(6), 301-316.
[23] Henrard, M. (2014). Interest rate modelling in the multi‐curve framework. Basingstoke: Palgrave Macmillan.
[24] Jacod, J., & Shiryaev, A. (2003). Limit theorems for stochastic processes (2nd ed.). Berlin-Heidelberg: Springer. · Zbl 1018.60002
[25] Kallsen, J., & Shiryaev, A. N. (2002). The cumulant process and Esscher’s change of measure. Finance and Stochastics, 6(4), 397-428. · Zbl 1035.60042
[26] Kenyon, C. (2010). Post‐shock short‐rate pricing. Risk Magazine, 23(11), 79-83.
[27] Kijima, M., Tanaka, K., & Wong, T. (2009). A multi‐quality model of interest rates. Quantitative Finance, 9(2), 133-145. · Zbl 1158.91353
[28] Macrina, A., & Mahomed, O. (2018). Consistent valuation across curves using pricing kernels. Risks, 6(1). https://doi.org/10.2139/ssrn.3102513 · doi:10.2139/ssrn.3102513
[29] Mercurio, F. (2009). Interest rates and the credit crunch: New formulas and market models. Bloomberg Portfolio Research Paper No. 2010‐01‐FRONTIERS.
[30] Mercurio, F. (2010). LIBOR market models with stochastic basis. Risk Magazine, 23(12), 84-89.
[31] Nguyen, T. A., & Seifried, F. (2015). The multi‐curve potential model. International Journal of Theoretical and Applied Finance, 18(7), 1550049. · Zbl 1337.91120
[32] Powell, M. J. D. (1978). A fast algorithm for nonlinearly constrained optimization calculations. In G. A.Watson (ed.) (Ed.), Numerical analysis (pp. 144-157). Berlin-Heidelberg: Springer. · Zbl 0374.65032
[33] Sato, K.‐I. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press. · Zbl 0973.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.