×

Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero-coupon bonds. (English) Zbl 1508.91554

Summary: In this paper, we study the excursions of Bessel and Cox-Ingersoll-Ross (CIR) processes with dimensions \(0<\delta <2\). We obtain densities for the last passage times and meanders of the processes. Using these results, we prove a variation of the Azéma martingale for the Bessel and CIR processes based on excursion theory. Furthermore, we study their Parisian excursions, and generalize previous results on the Parisian stopping time of Brownian motion to that of the Bessel and CIR processes. We obtain explicit formulas and asymptotic results for the densities of the Parisian stopping times, and develop exact simulation algorithms to sample the Parisian stopping times of Bessel and CIR processes. We introduce a new type of bond, the zero-coupon Parisian bond. The buyer of such a bond is betting against zero interest rates, while the seller is effectively hedging against a period where interest rates fluctuate around 0. Using our results, we propose two methods for pricing these bonds and provide numerical examples.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60G44 Martingales with continuous parameter
Full Text: DOI

References:

[1] Azéma, J. (1985). Sur les fermés aléatoires. In J.Azéma (ed.) & M.Yor (ed.) (Eds.), Séminaire de Probabilités XIX 1983/84, (vol. 19, pp. 397-495), Berlin Heidelberg New York: Springer‐Verlag. · Zbl 0563.60038
[2] Ball, C. A. (1993). A review of stochastic volatility models with application to option pricing. Financial Markets, Institutions and Instruments, 2(5), 55-71.
[3] Bertoin, J. (1990). Excursions of a BES0 (d) and its drift term (0 < d < 1). Probability Theory and Related Fields, 84(2), 231-250. · Zbl 0665.60073
[4] Borodin, A. N., & Salminen, P. (2012). Handbook of Brownian motion‐facts and formulae. Basel: Birkhäuser. https//doi.org/10.1007/978‐3‐0348‐7652‐0_7 · Zbl 0859.60001 · doi:10.1007/978‐3‐0348‐7652‐0_7
[5] Brigo, D., & Alfonsi, A. (2005). Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model. Finance and Stochastics, 9(1), 29-42. · Zbl 1065.60085
[6] Carr, P., & Linetsky, V. (2006). A jump to default extended CEV model: An application of Bessel processes. Finance and Stochastics, 10(3), 303-330. · Zbl 1101.60057
[7] Chen, R.‐R., & Scott, L. (1992). Pricing interest rate options in a two‐factor Cox-Ingersoll-Ross model of the term structure. Review of Financial Studies, 5(4), 613-636.
[8] Chesney, M., Jeanblanc‐Picqué, M., & Yor, M. (1997). Brownian excursions and Parisian barrier options. Advances in Applied Probability, 29(1), 165-184. · Zbl 0882.60042
[9] Cox, J. C., Ingersoll, J. E., Jr., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica: Journal of the Econometric Society, 53(2), 385-407. · Zbl 1274.91447
[10] Dassios, A., & Lim, J. W. (2013). Parisian option pricing: A recursive solution for the density of the Parisian stopping time. SIAM Journal on Financial Mathematics, 4(1), 599-615. · Zbl 1295.91098
[11] Dassios, A., & Lim, J. W. (2015). An analytical solution for the two‐sided Parisian stopping time, its asymptotics, and pricing of Parisian options. Mathematical Finance, 27(2), 604-620. · Zbl 1541.91244
[12] Dassios, A., & Lim, J. W. (2016). An extension to azéma martingales and drawdown options. Working Paper, London School of Economics.
[13] Dassios, A., & Lim, J. W. (2017). An efficient algorithm for simulating the drawdown stopping time and the running maximum of a Brownian motion. Methodology and Computing in Applied Probability, 20, 189-204. https//doi.org/10.1007/s11009‐017‐9542‐y · Zbl 1409.91232 · doi:10.1007/s11009‐017‐9542‐y
[14] Dassios, A., Lim, J. W., & Qu, Y. (2017). Truncated inverse Gaussian Lévy measures and applications in insurance and finance. Working Paper, London School of Economics.
[15] Dassios, A., & Wu, S. (2010). Perturbed Brownian motion and its application to Parisian option pricing. Finance and Stochastics, 14(3), 473-494. · Zbl 1226.91073
[16] Delbaen, F., & Shirakawa, H. (2002). A note on option pricing for the constant elasticity of variance model. Asia‐Pacific Financial Markets, 9(2), 85-99. · Zbl 1072.91020
[17] Delsaen, F. (1993). Consols in the CIR model. Mathematical Finance, 3(2), 125-134. · Zbl 0884.90023
[18] Elworthy, K., Li, X.‐M., & Yor, M. (1999). The importance of strictly local martingales; applications to radial Ornstein-Uhlenbeck processes. Probability Theory and Related Fields, 115(3), 325-355. · Zbl 0960.60046
[19] Glasserman, P. (2013). Monte Carlo methods in financial engineering, (vol. 53). New York: Springer Science & Business Media.
[20] Göing‐Jaeschke, A., & Yor, M. (2003). A survey and some generalizations of Bessel processes. Bernoulli, 9(2), 313-349. · Zbl 1038.60079
[21] Heston, S. L. (1993). A closed‐form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327-343. · Zbl 1384.35131
[22] Jarrow, R. A., Lando, D., & Yu, F. (2005). Default risk and diversification: Theory and empirical implications. Mathematical Finance, 15(1), 1-26. · Zbl 1109.91036
[23] Jeanblanc, M., Yor, M., & Chesney, M. (2009). Mathematical methods for financial markets. London: Springer Science & Business Media. · Zbl 1205.91003
[24] McKean, H. P., Jr. (1960). The Bessel motion and a singular integral equation. Memoirs of the College of Science, University of Kyoto. Series A: Mathematics, 33(2), 317-322. · Zbl 0243.45009
[25] Perman, M., Pitman, J., & Yor, M. (1992). Size‐biased sampling of Poisson point processes and excursions. Probability Theory and Related Fields, 92(1), 21-39. · Zbl 0741.60037
[26] Pitman, J., & Yor, M. (1992). Arcsine laws and interval partitions derived from a stable subordinator. Proceedings of the London Mathematical Society, 3(2), 326-356. · Zbl 0769.60014
[27] Pitman, J., & Yor, M. (1997). On the lengths of excursions of some Markov processes. In J.Azéma (ed.), M.Yor (ed.), & M.Emery (ed.) (Eds.), Séminaire de probabilités XXXI (vol. 31, pp. 272-286). New York: Springer. · Zbl 0884.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.