×

The space of light rays: causality and \(L\)-boundary. (English) Zbl 1508.83023

Summary: The space of light rays \(\mathcal{N}\) of a conformal Lorentz manifold \((M,\mathcal{C})\) is, under some topological conditions, a manifold whose basic elements are unparametrized null geodesics. This manifold \(\mathcal{N}\), strongly inspired on R. Penrose’s twistor theory, keeps all information of \(M\) and it could be used as a space complementing the spacetime model. In the present review, the geometry and related structures of \(\mathcal{N}\), such as the space of skies \(\varSigma\) and the contact structure \(\mathcal{H}\), are introduced. The causal structure of \(M\) is characterized as part of the geometry of \(\mathcal{N}\). A new causal boundary for spacetimes \(M\) prompted by R. Low, the \(L\)-boundary, is constructed in the case of 3-dimensional manifolds \(M\) and proposed as a model of its construction for general dimension. Its definition only depends on the geometry of \(\mathcal{N}\) and not on the geometry of the spacetime \(M\). The properties satisfied by the \(L\)-boundary \(\partial M\) permit to characterize the obtained extension \(\overline{M}=M\cup\partial M\) and this characterization is also proposed for general dimension.

MSC:

83F05 Relativistic cosmology
53D10 Contact manifolds (general theory)
78M15 Boundary element methods applied to problems in optics and electromagnetic theory
53C18 Conformal structures on manifolds
62D20 Causal inference from observational studies
81V80 Quantum optics
83C50 Electromagnetic fields in general relativity and gravitational theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

References:

[1] Aké, L.; Flores, JL; Sánchez, M., Structure of globally hyperbolic spacetimes with timelike boundary, Rev. Mat. Iberoam., 37, 45-94 (2021) · Zbl 1475.53074 · doi:10.4171/rmi/1201
[2] Abraham, R.; Marsden, JE; Ratiu, T., Manifolds, tensor analysis and applications (1988), New York: Springer Verlag, New York · Zbl 0875.58002
[3] Arnold, VI, Mathematical methods of classical mechanics (1989), New York: Springer Verlag, New York · Zbl 0692.70003
[4] Bautista, A.; Ibort, A.; Lafuente, J., On the space of light rays of a spacetime and a reconstruction theorem by Low, Class. Quantum Grav., 31 (2014) · Zbl 1291.83036
[5] Bautista, A.; Ibort, A.; Lafuente, J., Causality and skies: is refocussing necessary?, Class. Quantum Grav., 32 (2015) · Zbl 1328.83037
[6] Bautista, A., Ibort, A., Lafuente, J.: The canonical contact structure in the space of light rays. A Mathematical Tribute to Professor José María Montesinos Amilibia. Dpto. Geometría y Topología, UCM, Madrid. (2015)
[7] Bautista, A.; Ibort, A.; Lafuente, J.; Low, R., A conformal boundary for space-times based on light-like geodesics: The \(3\)-dimensional case, J. Math. Phys., 58 (2017) · Zbl 1360.83010
[8] Bautista, A.; Ibort, A.; Lafuente, J., L-extensions and L-boundary of conformal space-times, Gen. Relativ. Gravit., 50, 153 (2018) · Zbl 1426.53040 · doi:10.1007/s10714-018-2479-9
[9] Beem, JK; Ehrlich, PE; Easley, KL, Global Lorentzian Geometry (1996), New York: Marcel Dekker, New York · Zbl 0846.53001
[10] Bernal, AN; Sánchez, M., On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Commun. Math. Phys., 243, 461-470 (2003) · Zbl 1085.53060
[11] Brickell, F.; Clark, RS, Differentiable manifolds. An Introduction (1970), London: Van Nostrand Reinhold, London · Zbl 0199.56303
[12] Budic, R.; Sachs, RK, Causal boundaries for general relativistic spacetimes, J. Math. Phys., 15, 1302-1309 (1974) · Zbl 0285.53045
[13] Cannas da Silva, A., Lectures on symplectic geometry (2001), New York: Springer-Verlag, New York · Zbl 1016.53001
[14] Ciaglia, FM; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L.; Zampini, A., Causality in Schwinger’s picture of quantum mechanics, Entropy, 24, 75 (2022) · Zbl 1489.81032 · doi:10.3390/e24010075
[15] Chernov, V.; Rudyak, Y., Linking and causality in globally hyperbolic space-times, Comm. Math. Phys., 279, 309-354 (2008) · Zbl 1163.53043
[16] Chernov, V.; Nemirovski, S., Legendrian links, causality, and the Low conjecture, Geom. Funct. Analysis, 19, 1320-1333 (2010) · Zbl 1186.83013
[17] Chernov, V.; Nemirovski, S., Non-negative Legendrian isotopy in \(ST^*M\), Geom. Topol., 14, 611-626 (2010) · Zbl 1194.53066
[18] Chernov, V.; Nemirovski, S., Universal orderability of Legendrian isotopy classes, J. Symplectic Geom., 14, 1, 149-170 (2016) · Zbl 1350.53100
[19] Chernov, V.; Nemirovski, S., Redshift and contact forms, J. Geom. Phys., 123, 379-384 (2018) · Zbl 1380.53091
[20] Chernov, V., Conjectures on the relations of linking and causality in causally simple spacetimes, Class. Quantum Grav., 35 (2018) · Zbl 1391.83012
[21] Chernov, V., Causality and Legendrian linking for higher dimensional spacetimes, J. Geom. Phys., 133, 26-29 (2018) · Zbl 1400.53059
[22] Field, TR; Low, R., Causal relations via linking in twistor space, J. Geom. Phys., 28, 339-348 (1998) · Zbl 0947.83004
[23] Flores, JL; Herrera, J.; Sánchez, M., On the final definition of the causal boundary and its relation with the conformal boundary, Adv. Theor. Math. Phys., 15, 4, 991-1057 (2011) · Zbl 1251.83008
[24] García-Parrado, A.; Senovilla, JMM, Causal structures and causal boundaries, Class. Quantum Grav., 22, R1-R84 (2005) · Zbl 1073.83001
[25] Geiges, H.: An introduction to contact topology. Cambridge University Press (2008) · Zbl 1153.53002
[26] Geroch, RP, Local characterization of singularities in general relativity, J. Math. Phys., 9, 450-465 (1968) · Zbl 0172.27905
[27] Geroch, RP; Kronheimer, EH; Penrose, R., Ideal points in Space-Time, Proc. Roy. Soc. London. A, 327, 545-567 (1968) · Zbl 0257.53059
[28] Guillemin, V.: Cosmology in \((2+1)\)-dimensions, cyclic models, and deformations of \(M_{2,1}\). (AM-121). Princeton University Press, (1989) · Zbl 0697.53003
[29] Harris, SG, Universality of the future chronological boundary, J. Math. Phys., 39, 10, 5427-5445 (1998) · Zbl 0927.53030
[30] Harris, SG, Topology of the future chronological boundary: universality for spacelike boundaries, Class. Quantum Grav., 17, 3, 551-603 (2000) · Zbl 0943.83002
[31] Hartman, P., Ordinary differential equations (1964), New York: Wiley, New York · Zbl 0125.32102
[32] Hawking, SW; Ellis, GFR, The large scale structure of space-time (1973), Cambridge: Cambridge University Press, Cambridge · Zbl 0265.53054
[33] Hedicke, J.; Minguzzi, E.; Schinnerl, B.; Steinbauer, R.; Suhr, S., Causal simplicity and (maximal) null pseudoconvexity, Class. Quantum Grav., 38 (2021) · Zbl 1479.83259
[34] Khesin, B.; Tabachnikov, S., Pseudo-Riemannian geodesics and billiards, Adv. Math., 221, 1364-1396 (2009) · Zbl 1173.37037
[35] Kinlaw, PA, Refocusing of light rays in space-time, J. Math. Phys., 52 (2011) · Zbl 1317.83040
[36] Kulkarni, R.S.: Conformal structures and Möbius structures. Conformal geometry (R.S. Kulkarni & U. Pinkall eds. Friedrich Vieweg & sohn, Braunshweig/Wiesbaden (1988) · Zbl 0659.53015
[37] Lafontaine, J.: Conformal geometry from the Riemannian viewpoint. Conformal geometry (R.S. Kulkarni & U. Pinkall eds.). Friedrich Vieweg & sohn, Braunshweig/Wiesbaden (1988) · Zbl 0661.53008
[38] Landau, LD; Lifshitz, EM, The classical theory of fields (1971), Oxford, New York: Pergamon Press, Oxford, New York · Zbl 0043.19803
[39] Libermann, P.; Marle, CM, Symplectic geometry and analytical mechanic (1987), Dordrecht: D. Reidel Publishing Company, Dordrecht · Zbl 0643.53002
[40] Low, R.J.: Causal relations and spaces of null geodesics, Ph.D. Thesis, Oxford University (1988)
[41] Low, RJ, The geometry of the space of null geodesics, J. Math. Phys., 30, 809-811 (1989) · Zbl 0677.53070
[42] Low, RJ, Twistor linking and causal relations, Class. Quant. Grav., 7, 177-187 (1990) · Zbl 0683.53058
[43] Low, RJ, Spaces of causal paths and naked singularities, Class. Quant. Grav., 7, 943-954 (1990) · Zbl 0699.53087
[44] Low, RJ, Twistor linking and causal relations in exterior Schwarzschild space, Class. Quant. Grav., 11, 453-456 (1994) · Zbl 0792.53074
[45] Low, RJ, Stable singularities of wave-fronts in general relativity, J. Math. Phys., 39, 3332-3335 (1998) · Zbl 1001.83006
[46] Low, R.J.: The space of null geodesics. Nonlinear Anal. Theory Methods Appl. 47 (5), 3005-3017 (2001). doi:10.1016/S0362-546X(01)00421-7 · Zbl 1042.53513
[47] Low, R.J.: The space of null geodesics (and a new causal boundary). Lecture Notes in Physics 692, Springer, Berlin Heidelberg, New York (2006), 35-50 · Zbl 1104.83017
[48] Marín-Salvador, A., Rubio, R.: On the space of null geodesics of a spacetime: the compact case, Engel geometry and retrievability. Preprint arXiv:2112.06955, (2021)
[49] Marolf, D.; Ross, S., Plane waves: to infinity and beyond!, Class. Quant. Grav., 19, 6289-6302 (2002) · Zbl 1026.83024
[50] Marolf, D.; Ross, SR, A new recipe for causal completions, Class. Quant. Grav., 20, 4085-4117 (2003) · Zbl 1052.83007
[51] Minguzzi, E., Sánchez, M.: The causal hierarchy of space-times. Recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys, 299-358. (Eur. Math. Soc., Zürich, 2008) · Zbl 1148.83002
[52] Minguzzi, E., Lorentzian causality theory, Living Rev. Relativ., 22, 3 (2019) · Zbl 1442.83021 · doi:10.1007/s41114-019-0019-x
[53] Natário, J.: Causal relations in the manifold of light rays. Ph.D. Thesis, Oxford University (2000)
[54] Natário, J., Linking and causality in \((2+1)\)-dimensional static spacetimes, Class. Quantum Grav., 19, 3115-3126 (2002) · Zbl 1005.83022
[55] Natário, J.; Tod, P., Linking, Legendrian linking and causality, Proc. London Math. Soc. (3), 88, 251-272 (2004) · Zbl 1047.83027
[56] O’Neill, B., Semi-Riemannian geometry with applications to Relativity (1983), New York: Academic Press, New York · Zbl 0531.53051
[57] Penrose, R.: Republication of: Conformal treatment of infinity. Gen. Relativ. Grav. 43, 901-922 (2011). Original paper: Roger Penrose, In: Relativity, groups and topology. Edited by B. deWitt and C. deWitt. Gordon and Breach, New York, London 1964, pp. 565-584 · Zbl 1215.83019
[58] Penrose, R., The twistor programme, Reports on Mathematical Physics., 12, 65-76 (1977)
[59] Penrose, R.: Techniques of differential topology in relativity. Conference series in Applied Mathematics. Conference board of the Mathematical Sciences. University of London, London (1972) · Zbl 0321.53001
[60] Penrose, R.; Rindler, W., Spinors and space-time (1984), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0538.53024
[61] Penrose, R.; Rindler, W., Spinors and space-time (1988), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0591.53002
[62] Rácz, I., Causal boundary of space-times, Phys. Rev. D, 36, 6, 1673-1675 (1987)
[63] Sánchez, M., Causal boundaries and holography on wave type spacetimes, Nonlinear Anal., 71, e1744-e1764 (2009) · Zbl 1238.53050
[64] Schmidt, BG, A new definition of singular points in general relativity, Gen. Relat. Gravit., 1, 269-280 (1971) · Zbl 0332.53039
[65] Suhr, S., A counterexample to Guillemin’s Zollfrei Conjecture, J. Topol. Anal., 05, 251-260 (2013) · Zbl 1282.53033
[66] Szabados, LB, Causal boundary for strongly causal spaces, Class. Quantum Grav., 5, 121 (1988) · Zbl 0636.53067
[67] Szabados, LB, Causal boundary for strongly causal spacetimes II, Class. Quantum Grav., 6, 77 (1989) · Zbl 0663.53053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.