×

Detection of multiple trine ensemble. (English) Zbl 1508.81089

Summary: In [“Optimal detection of quantum information”, Phys. Rev. Lett. 66, No. 9, 1119–1122 (1991; doi:10.1103/PhysRevLett.66.1119)], A. Peres and W. K. Wootters took an example of detecting the two-copy trine ensemble to demonstrate the nonlocal processing of quantum information [loc. cit.]. We in this paper present a complete solution to the classic problem of detecting the \(N\)-copy trine ensemble with the minimum-error discrimination strategy. We construct the most general operators of a positive operator valued measure, from which the optimal detection of the \(N\)-copy trine ensemble can be derived. The states of the measurement operators are all entangled states, and the correct probability of detecting \(N\)-copy trine states tends to unit as the number \(N\) of the copies goes to infinite. Our results demonstrate “nonlocality without entanglement” in \(N\)-qubit pure states.

MSC:

81P18 Quantum state tomography, quantum state discrimination
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[2] Bennett, CH; Wiesner, SJ, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett., 69, 2881 (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[3] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[4] Raimond, JM; Brune, M.; Haroche, S., Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys., 73, 565 (2001) · Zbl 1205.81029 · doi:10.1103/RevModPhys.73.565
[5] Duan, L-M; Monroe, C., Colloquium: quantum networks with trapped ions, Rev. Mod. Phys., 82, 1209 (2010) · doi:10.1103/RevModPhys.82.1209
[6] Pan, J-W; Chen, Z-B; Lu, C-Y; Weinfurter, H.; Zeilinger, A.; Zukowski, M., Multiphoton entanglement and interferometry, Rev. Mod. Phys., 84, 777 (2012) · doi:10.1103/RevModPhys.84.777
[7] Peres, A.; Wootters, WK, Optimal detection of quantum information, Phys. Rev. Lett., 66, 1119 (1991) · doi:10.1103/PhysRevLett.66.1119
[8] Bennett, CH; DiVincenzo, DP; Fuchs, CA; Mor, T.; Rains, E.; Shor, PW; Smolin, JA; Wootters, WK, Quantum nonlocality without entanglement, Phys. Rev. A, 59, 1070 (1999) · doi:10.1103/PhysRevA.59.1070
[9] Niset, J.; Cerf, NJ, Multipartite nonlocality without entanglement in many dimensions, Phys. Rev. A, 74 (2006) · doi:10.1103/PhysRevA.74.052103
[10] Xu, G-B; Wen, Q-Y; Qin, S-J; Yang, Y-H; Gao, F., Quantum nonlocality of multipartite orthogonal product states, Phys. Rev. A, 93 (2016) · doi:10.1103/PhysRevA.93.032341
[11] Croke, S.; Barnett, SM, Difficulty of distinguishing product states locally, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.012337
[12] Demianowicz, M.; Augusiak, R., From unextendible product bases to genuinely entangled subspaces, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevA.98.012313
[13] Halder, S.; Banik, M.; Agrawal, S.; Bandyopadhyay, S., Strong quantum nonlocality without entanglement, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.040403
[14] Massar, S.; Popescu, S., Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett., 74, 1259 (1995) · Zbl 1020.81517 · doi:10.1103/PhysRevLett.74.1259
[15] Peres, A., Collective tests for quantum nonlocality, Phys. Rev. A, 54, 2685 (1996) · doi:10.1103/PhysRevA.54.2685
[16] Brody, D.; Meister, B., Minimum decision cost for quantum ensembles, Phys. Rev. Lett., 76, 1 (1996) · Zbl 0944.81503 · doi:10.1103/PhysRevLett.76.1
[17] Ban, M.; Yamazaki, K.; Hirota, O., Accessible information in combined and sequential quantum measurementson a binary-state signal, Phys. Rev. A, 55, 22 (1997) · doi:10.1103/PhysRevA.55.22
[18] Acłn, A.; Bagan, E.; Baig, M.; Masanes, L.; Munoz-Tapia, R., Multiple-copy two-state discrimination with individual measurements, Phys. Rev. A, 71, 032338 (2005) · Zbl 1227.81014 · doi:10.1103/PhysRevA.71.032338
[19] Walgate, J.; Short, AJ; Hardy, L.; Vedral, V., Local distinguishability of multipartite orthogonal quantum states, Phys. Rev. Lett., 85, 4972 (2000) · doi:10.1103/PhysRevLett.85.4972
[20] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413 (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[21] Vedral, V.; Plenio, MB; Rippin, MA; Knight, PL, Quantifying entanglement, Phys. Rev. Lett., 78, 2275 (1997) · Zbl 0944.81011 · doi:10.1103/PhysRevLett.78.2275
[22] Vedral, V.; Plenio, MB, Entanglement measures and purification procedures, Phys. Rev. A, 57, 1619 (1998) · doi:10.1103/PhysRevA.57.1619
[23] Horodecki, M.; Horodecki, P.; Horodecki, R., Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?, Phys. Rev. Lett., 80, 5239 (1998) · Zbl 0947.81005 · doi:10.1103/PhysRevLett.80.5239
[24] Wootters, WK, Distinguishing unentangled states with an unentangled measurement, Int. J. Quantum Inf., 4, 219 (2006) · Zbl 1099.81023 · doi:10.1142/S0219749906001724
[25] Chitambar, E.; Hsieh, M-H, Revisiting the optimal detection of quantum information, Phys. Rev. A, 88, 020302(R) (2013) · doi:10.1103/PhysRevA.88.020302
[26] Helstrom, CW, Quantum Detection and Estimation Theory (1976), New York: Academic, New York · Zbl 1332.81011
[27] Peres, A., Quantum Theory: Concepts and Methods (1993), Dordrecht: Kluwer, Dordrecht · Zbl 0820.00011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.