×

A meshless Hermite weighted least-square method for piezoelectric structures. (English) Zbl 1508.78015

Summary: In this paper, a meshless Hermite weighted least-square method is developed to improve the accuracy and stability of the numerical analysis for piezoelectric structures. The basic equations of the piezoelectric structures including the constitutive equation, geometric equations, equilibrium equations and boundary conditions are introduced. The approximate function of the Hermite weighted least-square method is constructed through the Hermite approximation method and weighted least-square method. The collocation method is utilized to derive the discrete equation of the Hermite weighted least-square method for the piezoelectric structures. Furthermore, the influences of the scale parameter and node number on the calculation accuracy of the present method are discussed, and the effectiveness of the present method for analyzing the piezoelectric structures is demonstrated by some numerical examples. The numerical results show that the Hermite weighted least-square method can effectively analyze the piezoelectric structures with various boundary conditions, and has excellent convergence and calculation accuracy.

MSC:

78M22 Spectral, collocation and related methods applied to problems in optics and electromagnetic theory
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Ramadan, K. S.; Sameoto, D.; Evoy, S., A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., 23, Article 033001 pp. (2014)
[2] Salazar, R.; Serrano, M.; Abdelkefi, A., Fatigue in piezoelectric ceramic vibrational energy harvesting: a review, Appl. Energy, 270, Article 115161 pp. (2020)
[3] Ma, X.; Wei, G. F., Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites, Compos. Struct., 180, 420-428 (2017)
[4] Pasharavesh, A.; Ahmadian, M. T.; Zohoor, H., On the energy extraction from large amplitude vibrations of MEMS-based piezoelectric harvesters, Acta Mech, 228, 3445-3468 (2017) · Zbl 1384.74035
[5] Ali, F.; Raza, W.; Li, X. L.; Gul, H.; Kim, K. H., Piezoelectric energy harvesters for biomedical applications, Nano Energy, 57, 879-902 (2019)
[6] Fang, D. N.; Li, F. X.; Liu, B.; Zhang, Y. H.; Hong, J. W.; Guo, X. H., Advances in developing electromechanically coupled computational methods for piezoelectrics/ferroelectrics at multiscale, Appl. Mech. Rev., 65, Article 060802 pp. (2013)
[7] Sun, K.; Liu, L.; Qiu, J.; Feng, G., Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems, IEEE T. Fuzzy Syst. (2020)
[8] Sun, K.; Qiu, J.; Karimi, H. R.; Fu, Y., Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance, IEEE T. Fuzzy Syst. (2020)
[9] Sun, K.; Qiu, J.; Karimi, H. R.; Gao, H., A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint, IEEE T. Syst. Man Cy. (2019)
[10] Ma, X.; Wang, Z. Y.; Zhou, B.; Xue, S. F., A study on performance of distributed piezoelectric composite actuators using Galerkin method, Smart Mater. Struct., 28, Article 105049 pp. (2019)
[11] Wang, L.; Deng, Z. Q.; Yue, H. H.; Wang, H. D., Dynamic stiffness control of piezoelectric ring based on finite difference and hybrid programming simulation, Mech. Syst. Signal Pr., 108, 347-359 (2018)
[12] Ramegowda, P. C.; Ishihara, D.; Takata, R.; Niho, T.; Horie, T., Finite element analysis of a thin piezoelectric bimorph with a metal shim using solid direct-piezoelectric and shell inverse-piezoelectric coupling with pseudo direct-piezoelectric evaluation, Compos. Struct., 245, Article 112284 pp. (2020)
[13] Hsu, C. L.; Hwu, C.; Shiah, Y. C., Three-dimensional boundary element analysis for anisotropic elastic solids and its extension to piezoelectric and magnetoelectroelastic solids, Eng. Anal. Bound. Elem., 98, 265-280 (2019) · Zbl 1404.74185
[14] Liu, G. R.; Dai, K. Y.; Lim, K. M.; Gu, Y. T., A radial point interpolation method for simulation of two-dimensional piezoelectric structures, Smart Mater. Struct., 12, 171-180 (2003)
[15] Dai, B. D.; Wei, D. D.; Ren, H. P.; Zhang, Z., The complex variable meshless local Petrov-Galerkin method for elastodynamic analysis of functionally graded materials, Appl. Math. Comput., 309, 17-26 (2017) · Zbl 1411.74052
[16] Sarkar, S.; Singh, I. V.; Mishra, B. K., Adaptive mesh refinement schemes for the localizing gradient damage method based on biquadratic-bilinear coupled-field elements, Eng. Fract. Mech., 223, Article 106790 pp. (2020)
[17] Li, D. M.; Liew, K. M.; Cheng, Y. M., Analyzing elastoplastic large deformation problems with the complex variable element-free Galerkin method, Comput. Mech., 53, 1149-1162 (2014)
[18] Chen, L.; Cheng, Y. M., The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations, Comput. Mech., 62, 67-80 (2018) · Zbl 1461.74089
[19] Li, X. L.; Zhou, L. M., An element-free Galerkin method for electromechanical coupled analysis in piezoelectric materials with cracks, Adv. Mech. Eng., 9, 1-11 (2017)
[20] Liu, F. B.; Wu, Q.; Cheng, Y. M., A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems, Int. J. Appl. Mech., 11, Article 1950006 pp. (2019)
[21] Memari, A., Computational analysis of linear elastic crack growth in functionally graded bodies using non-uniform steps integrated in the MLPG, Int. J. Appl. Mech., 11, Article 1950080 pp. (2019)
[22] Weng, Y. J.; Cheng, Y. M., Analysis of variable coefficient advection-diffusion problems via complex variable reproducing kernel particle method, Chin. Phys. B, 22, Article 090204 pp. (2013)
[23] He, Y. H.; Zhou, Y.; Liu, Z. S.; Liew, K. M., Pattern transformation of single-material and composite periodic cellular structures, Mater. Design, 132, 375-384 (2017)
[24] Liew, K. M.; Sun, Y. Z.; Kitipornchai, S., Boundary element-free method for fracture analysis of 2-D anisotropic piezoelectric solids, Int. J. Numer. Meth. Eng., 69, 729-749 (2007) · Zbl 1194.74531
[25] Sladek, J.; Sladek, V.; Pan, E.; Wünsche, M., Fracture analysis in piezoelectric semiconductors under a thermal load, Eng. Fract. Mech., 126, 27-39 (2014)
[26] Thurieau, N.; Njiwa, R. K.; Taghite, M., A simple solution procedure to 3D-piezoelectric problems: isotropic BEM coupled with a point collocation method, Eng. Anal. Bound. Elem., 36, 1513-1521 (2012) · Zbl 1351.74140
[27] Fam, G. S.A.; Rashed, Y. F., An efficient meshless technique for the solution of transversely isotropic two-dimensional piezoelectricity, Comput. Math. Appl., 69, 438-454 (2015) · Zbl 1443.65428
[28] Yan, Z. Z.; Wei, C. Q.; Zhang, C. Z., Band structure calculation of SH waves in nanoscale multilayered piezoelectric phononic crystals using radial basis function method with consideration of nonlocal interface effects, Ultrasonics, 73, 169-180 (2016)
[29] Zhang, T.; Wei, G. F.; Ma, J. C.; Gao, H. F., Radial basis reproducing kernel particle method for piezoelectric materials, Eng. Anal. Bound. Elem., 92, 171-179 (2017) · Zbl 1403.74331
[30] Ma, J. C.; Wei, G. F.; Liu, D. D., Improved reproducing kernel particle method for piezoelectric materials, Chin. Phys. B, 27, Article 010201 pp. (2018)
[31] Sahoo, S. R.; Ray, M. C., Active control of doubly curved laminated composite shells using elliptical smart constrained layer damping treatment, Thin Wall. Struct., 140, 373-386 (2019)
[32] Moradi-Dastjerdi, R.; Meguid, S. A.; Rashahmadi, S., Electro-dynamic analysis of smart nanoclay-reinforced plates with integrated piezoelectric layers, Appl. Math. Model., 75, 267-278 (2019) · Zbl 1481.74500
[33] Wang, Q. X.; Li, H.; Lam, K. Y., Analysis of microelectromechanical systems (MEMS) devices by the meshless point weighted least-squares method, Comput. Mech., 40, 1-11 (2007) · Zbl 1175.74060
[34] Li, Z. J.; Li, P.; He, Z.; Liu, G. X., Coupled partition of unity method and improved meshless weighted least-square method for two-dimensional interior structure-acoustic problem, Eng. Anal. Bound. Elem., 36, 154-160 (2012) · Zbl 1245.74094
[35] Matsuzawa, S. H.; Mitsufuji, K.; Miyake, Y.; Hirata, K.; Miyasaka, F., Numerical analysis of electromagnetic levitation employing meshless method based on weighted least square method, J. Manuf. Sci. Prod., 15, 29-34 (2015)
[36] Pan, X. F.; Sze, K. Y.; Zhang, X., An assessment of the meshless weighted least-square method, Acta Mech. Solida Sin., 3, 270-282 (2004)
[37] Ma, J. C.; Wei, G. F.; Gao, H. F., The Hermit-type reproducing kernel particle method for elasticity problems, Int. J. Comp. Meth., 16, Article 1846003 pp. (2019) · Zbl 1404.74203
[38] Zhou, B.; Ma, X.; Xue, S. F., Nonlinear analysis of laminated beams with braided fiber piezoelectric composite actuators, Int. J. Appl. Mech., 12, Article 2050043 pp. (2020)
[39] Hidayat, M. I.P., Meshless local B-spline collocation method for heterogeneous heat conduction problems, Eng. Anal. Bound. Elem., 101, 76-88 (2019) · Zbl 1464.80042
[40] Fu, Y. M.; Wang, J. Z.; Mao, Y. Q., Nonlinear vibration and active control of functionally graded beams with piezoelectric sensors and actuators, J. Intell. Mater. Syst. Struct., 22, 2093-2102 (2011)
[41] Liew, K. M.; Lim, H. K.; Tan, M. J.; He, X. Q., Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method, Comput. Mech., 29, 486-497 (2002) · Zbl 1146.74370
[42] Zhang, X.; Liu, X. H.; Song, K. Z.; Lu, M. W., Least-squares collocation meshless method, Int. J. Numer. Meth. Eng., 51, 1089-1100 (2001) · Zbl 1056.74064
[43] Vidal, P.; Gallimard, L.; Polit, O., Modeling of piezoelectric plates with variables separation for static analysis, Smart Mater. Struct., 25, Article 055043 pp. (2016)
[44] Yang, D. Q.; Liu, Z. X., Analytical solution for bending of a piezoelectric cantilever beam under an end load, Chin. Q. Mech., 24, 327-333 (2003), (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.