×

On supercyclicity for abelian semigroups of matrices on \(\mathbb{R}^n\). (English) Zbl 1508.47012

Oper. Matrices 12, No. 3, 855-865 (2018); corrigendum ibid. 15, No. 2, 777-781 (2021).
Summary: We give a complete characterization of supercylicity for abelian semigroups of matrices on \(\mathbb{R}^n\), \(n \geqslant 1\). We solve the problem of determining the minimal number of matrices over \(\mathbb{R}\) which form a supercyclic abelian semigroup on \(\mathbb{R}^n\). In particular, we show that no abelian semigroup generated by \([\frac{n-1}{2}]\) matrices on \(\mathbb{R}\) can be supercyclic. (\([\cdot]\) denotes the integer part.) This answers a question raised by the second author in [H. Marzougui, Monatsh. Math. 175, No. 3, 401–410 (2014; Zbl 1318.47015)]. Furthermore, we show that supercyclicity and \(\mathbb{R}_+\)-supercyclicity are equivalent.

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
15A30 Algebraic systems of matrices

Citations:

Zbl 1318.47015
Full Text: DOI

References:

[1] H. ABELS ANDA. MANOUSSOS, Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices, Adv. Math. 229 (2012), 1862–1872. · Zbl 1236.47034
[2] A. AYADI ANDH. MARZOUGUI, Dense orbits for abelian subgroups of GL(n,C), Foliations 2005: World Scientific, Hackensack, NJ, (2006), 47–69. · Zbl 1222.37020
[3] A. AYADI ANDH. MARZOUGUI, Hypercyclic abelian semigroups of matrices onRn, Topology Appl, 210 (2016), 29–45. · Zbl 1366.37065
[4] A. AYADI, H. MARZOUGUI, Abelian semigroups of matrices onCnand Hypercyclicity, Proc. Edinb. Math. Soc. (2), 57 (2014), 323–338. · Zbl 1300.37019
[5] F. BAYART ANDE. MATHERON, Dynamics of Linear Operators, Cambridge Tracts in Math. 179, Cambridge University Press, (2009). · Zbl 1187.47001
[6] T. BERMUDEZ´, A. BONILLA, A. PERIS,C-supercyclic versus C+-supercyclic operators, Arch. Math. (Basel) 79 (2002), 125–130. · Zbl 1006.47006
[7] G. COSTAKIS, D. HADJILOUCAS, A. MANOUSSOS, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), 229–237. · Zbl 1200.47014
[8] G. COSTAKIS, D. HADJILOUCAS, A. MANOUSSOS, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137 (2009), 1025–1034. · Zbl 1162.47007
[9] N. S. FELDMAN, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82–98. · Zbl 1148.47008
[10] F. GALAZ-FONTES, Another proof for non-supercyclicity in finite dimensional complex Banach spaces, Amer. Math. Monthly 120 (2013), 466–468. · Zbl 1294.47007
[11] K. G. GROSSE-HERDMANN ANDA. PERIS, Linear Chaos, Springer, Universitext, (2011). · Zbl 1246.47004
[12] G. HERZOG, On linear operators having supercyclic vectors, Studia Math. 103 (1992), 295–298. · Zbl 0811.47018
[13] H. M. HILDEN, L. J. WALLEN, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), 557–565. · Zbl 0274.47004
[14] H. MARZOUGUI, Supercyclic abelian semigroups of matrices onCn, Monatsh. Math. 175 (2014), 401–410. · Zbl 1318.47015
[15] S. SHKARIN, Hypercyclic tuples of operators onCnandRn, Linear Multilinear Algebra 60 (2012), 885–896. · Zbl 1258.47013
[16] R. SOLTANI, K. HEDAYATIAN, B. KHANIROBATI, On supercyclicity of tuples of operators, Bull. Malays. Math. Sci. Soc. 38 (2015), 1507–1516. · Zbl 1342.47014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.