×

Towards mesoscopic ergodic theory. (English) Zbl 1508.37023

Summary: The present paper is devoted to a preliminary study towards the establishment of an ergodic theory for stochastic differential equations (SDEs) with less regular coefficients and degenerate noises. These equations are often derived as mesoscopic limits of complex or huge microscopic systems. By studying the associated Fokker-Planck equation (FPE), we prove the convergence of the time average of globally defined weak solutions of such an SDE to the set of stationary measures of the FPE under Lyapunov conditions. In the case where the set of stationary measures consists of a single element, the unique stationary measure is shown to be physical. Similar convergence results for the solutions of the FPE are established as well. Some of our convergence results, while being special cases of those contained in [M. Ji et al., J. Funct. Anal. 277, No. 11, Article ID 108281, 41 p. (2019; Zbl 1428.35600); J. Dyn. Differ. Equations 31, No. 3, 1591–1615 (2019; Zbl 1428.35601)] for SDEs with periodic coefficients, have weaken the required Lyapunov conditions and are of much simplified proofs. Applications to stochastic damping Hamiltonian systems and stochastic slow-fast systems are given.

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
35Q84 Fokker-Planck equations
35J25 Boundary value problems for second-order elliptic equations
37B25 Stability of topological dynamical systems
60J60 Diffusion processes
Full Text: DOI

References:

[1] Alves, J. F.; Bonatti, C.; Viana, M., SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent Math, 140, 351-398 (2000) · Zbl 0962.37012
[2] Arnold, L., Random Dynamical Systems, Springer Monographs in Mathematics (1998), Berlin: Springer-Verlag, Berlin · Zbl 0906.34001
[3] Benedicks, M.; Young, L-S, Sinai-Bowen-Ruelle measures for certain Hénon maps, Invent Math, 112, 541-576 (1993) · Zbl 0796.58025
[4] Birkhoff, G. D., Proof of the ergodic theorem, Proc Natl Acad Sci USA, 17, 656-660 (1931) · JFM 57.1011.02
[5] Bogachev, V. I.; Krylov, N. V.; Röckner, M., On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm Partial Differential Equations, 26, 2037-2080 (2001) · Zbl 0997.35012
[6] Bogachev V I, Krylov N V, Röckner M, et al. Fokker-Planck-Kolmogorov Equations. Mathematical Surveys and Monographs, vol. 207. Providence: Amer Math Soc, 2015 · Zbl 1342.35002
[7] Bogachev, V. I.; Rökner, M., A generalization of Khasminskii’s theorem on the existence of invariant measures for locally integrable drifts, Theory Probab Appl, 45, 363-378 (2002) · Zbl 1004.60061
[8] Bogachev, V. I.; Röokner, M.; Shaposhnikov, S. V., On uniqueness problems related to elliptic equations for measures, J Math Sci (NY), 176, 759-773 (2011) · Zbl 1290.35289
[9] Bogachev, V. I.; Röokner, M.; Shaposhnikov, S. V., On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation, Dokl Math, 85, 350-354 (2012) · Zbl 1266.60111
[10] Bogachev, V. I.; Röockner, M.; Stannat, V., Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions, Sb Math, 193, 945-976 (2002) · Zbl 1055.58009
[11] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (1975), Berlin-Heidelberg: Springer, Berlin-Heidelberg · Zbl 0308.28010
[12] Cattiaux, P.; León, J. R.; Pineda Centeno, A. A., An overlook on statistical inference issues for stochastic damping hamiltonian systems under the fluctuation-dissipation condition, Statistics, 51, 11-29 (2017) · Zbl 1378.62048
[13] Daley, D. J.; Vere-Jones, D., An Introduction to the Theory of Point Processes Volume I: Elementary Theory and Methods (2003), New York-Berlin-Heidelberg: Springer-Verlag, New York-Berlin-Heidelberg · Zbl 1026.60061
[14] de Simoi, J.; Liverani, C., Limit theorems for fast-slow partially hyperbolic systems, Invent Math, 213, 811-1016 (2018) · Zbl 1401.37029
[15] de Simoi, J.; Liverani, C.; Poquet, C., Fast-slow partially hyperbolic systems versus Freidlin-Wentzell random systems, J Stat Phys, 166, 650-679 (2017) · Zbl 1381.37042
[16] Ethier, S. N.; Kurtz, T. G., Markov Processes: Characterization and Convergence (1986), New York: John Wiley & Sons, New York · Zbl 0592.60049
[17] Giannakis, D.; Majda, A. J., Data-driven methods for dynamical systems: Quantifying predictability and extracting spatiotemporal patterns, Mathematical and Computational Modeling. Pure and Applied Mathematics, 137-191 (2015), Hoboken: Wiley, Hoboken
[18] Hofmanová, M.; Seidler, J., On weak solutions of stochastic differential equations II, Stoch Anal Appl, 31, 663-670 (2013) · Zbl 1277.60106
[19] Huang, W.; Ji, M.; Liu, Z., Steady states of Fokker-Planck equations: I. Existence, J Dynam Differential Equations, 27, 721-742 (2015) · Zbl 1339.35322
[20] Ji, M.; Qi, W.; Shen, Z., Existence of periodic probability solutions to Fokker-Planck equations with applications, J Funct Anal, 277, 108281 (2019) · Zbl 1428.35600
[21] Ji M, Qi W, Shen Z, et al. Convergence to periodic probability solutions in Fokker-Planck equations. https://sites.ualberta.ca/∼zhongwei/manuscript-Ji-Qi-Shen-Yi-convergence.pdf, 2019
[22] Ji, M.; Shen, Z.; Yi, Y., Convergence to equilibrium in Fokker-Planck equations, J Dynam Differential Equations, 31, 1591-1615 (2019) · Zbl 1428.35601
[23] Jost, J., Riemannian Geometry and Geometric Analysis (2017), Springer: Cham, Springer · Zbl 1380.53001
[24] Just, W.; Kantz, H.; Röodenbeck, C., Stochastic modelling: Replacing fast degrees of freedom by noise, J Phys A, 34, 3199-3213 (2001) · Zbl 1057.82009
[25] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics (1991), New York: Springer-Verlag, New York · Zbl 0734.60060
[26] Katsoulakis, M. A.; Vlachos, D. G., Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles, J Chem Phys, 119, 9412-9427 (2003)
[27] Khasminskii, R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations (in Russian), Teor Veroyatn Primen, 5, 196-214 (1960) · Zbl 0093.14902
[28] Khasminskii, R. Z., Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability (2012), Heidelberg: Springer, Heidelberg · Zbl 1259.60058
[29] Kotelenez, P., Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations, Stochastic Modelling and Applied Probability (2008), New York: Springer, New York · Zbl 1159.60004
[30] Kunze M. Stochastic differential equations. https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/kunze/SDE/sde_skript.pdf, 2012
[31] Le Bris, C.; Lions, P-L, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm Partial Differential Equations, 33, 1272-1317 (2008) · Zbl 1157.35301
[32] Ledrappier, F.; Young, L-S, The metric entropy of diffeomorphisms, I: Characterization of measures satisfying Pesin’s entropy formula; II: Relations between entropy, exponents and dimension, Ann of Math (2), 122, 509-539 (1985) · Zbl 0605.58028
[33] Ledrappier, F.; Young, L-S, Entropy formula for random transformations, Probab Theory Related Fields, 80, 217-240 (1988) · Zbl 0638.60054
[34] Liao, S., Certain ergodic properties of a differential system on a compact differentiable manifold, Acta Sci Natur Univ Pekinensis, 9, 241-265 (1963)
[35] Liao, S., On characteristic exponents: Construction of a new Borel set for the multiplicative ergodic theorem for vector fields, Beijing Daxue Xuebao Ziran Kexue Ban, 29, 277-302 (1993) · Zbl 0789.58045
[36] MacKay, R. S., Langevin equation for slow degrees of freedom of Hamiltonian systems, Nonlinear Dynamics and Chaos: Advances and perspectives. Understanding Complex Systems, 89-102 (2010), Berlin: Springer, Berlin · Zbl 1230.37100
[37] Majda, A. J.; Wang, X., Non-Linear Dynamics and Statistical Theories for Basic Geophysical Flows (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1141.86001
[38] Manita, O. A.; Shaposhnikov, V. S., On the Cauchy problem for Fokker-Planck-Kolmogorov equations with potential terms on arbitrary domains, J Dynam Differential Equations, 28, 493-518 (2016) · Zbl 1348.35092
[39] Nadler, B.; Lafon, S.; Coifman, R. R., Diffusion maps, spectral clustering and reaction coordinates of dynamical systems, Appl Comput Harmon Anal, 21, 113-127 (2006) · Zbl 1103.60069
[40] Oseledec, V. I., A multiplicative ergodic theorem: Lyapunov characteristic number for dynamical systems, Trans Moscow Math Soc, 19, 197-231 (1968) · Zbl 0236.93034
[41] Pope, S. B., Simple models of turbulent flows, Phys Fluids, 23, 011301 (2011) · Zbl 1308.76134
[42] Qian, H.; Ao, P.; Tu, Y., A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales, Chem Phys Lett, 665, 153-161 (2016)
[43] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications (1989), Berlin: Springer-Verlag, Berlin · Zbl 0665.60084
[44] Ruelle, D., A measure associated with Axiom-A attractors, Amer J Math, 98, 619-654 (1976) · Zbl 0355.58010
[45] Sinai, Y. G., Gibbs measures in ergodic theory (in Russian), Uspekhi Mat Nauk, 27, 21-69 (1972) · Zbl 0255.28016
[46] Sreenivasan, K. R.; Antonia, R. A., The phenomenology of small-scale turbulence, Annu Rev Fluid Mech, 29, 435-472 (1997)
[47] Veretennikov, A. Y., On polynomial mixing bounds for stochastic differential equations, Stochastic Process Appl, 70, 115-127 (1997) · Zbl 0911.60042
[48] von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc Natl Acad Sci USA, 18, 70-82 (1932) · JFM 58.1271.03
[49] Walters, P., An Introduction to Ergodic Theory (1982), New York-Berlin: Springer-Verlag, New York-Berlin · Zbl 0475.28009
[50] Wang, Q.; Young, L., Toward a theory of rank one attractors, Ann of Math (2), 167, 349-480 (2008) · Zbl 1181.37049
[51] Wu, L., Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Process Appl, 91, 205-238 (2001) · Zbl 1047.60059
[52] Young, L-S, What are SRB measures, and which dynamical systems have them?, J Stat Phys, 108, 733-754 (2002) · Zbl 1124.37307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.