×

Locally type \(\mathrm{FP}_n\) and \(n\)-coherent categories. (English) Zbl 1508.18003

The first and third author [J. Pure Appl. Algebra 221, No. 6, 1249–1267 (2017; Zbl 1362.18019)] described a nice interplay between modules of type \(\mathrm{FP}_{n}\)and \(n\)-coherentrings in terms of closure properties. The principal objective in this paper is to present and study the concept of \(n\)-coherent categories as a general framework for the study of finiteness conditions of objects, based mainly in the proposal of the concept of locally type \(\mathrm{FP}_{n}\) categories and \(n\)-coherent objects, as generalizations of locally f-initely generated and locally finitely presented categories, and of noetherian and coherent objects [B. Stenström, Rings of quotients. An introduction to methods of ring theory. Berlin-Heidelberg-New York: Springer-Verlag (1975; Zbl 0296.16001; J. Stovicek, “On purity and applications to coderived and singularity categories”, Preprint, arXiv:1412.1615]. The main result is Theorem 5.5, where several characterizations of \(n\)-coherent categories are given. One of these characterizations is given in terms of the existence of a hereditary small cotorsion theory generated by the class of objects of type \(\mathrm{FP}_{n}\). Theorem 5.5 also generalizes the results in [D. Bravo and M. A. Pérez, J. Pure Appl. Algebra 221, No. 6, 1249–1267 (2017; Zbl 1362.18019)] concerning modules of type \(\mathrm{FP}_{n}\), \(\mathrm{FP}_{n}\)-injective modules and \(n\)-coherent rings to the more general context of Grothendieck categories.
The synopsis of the paper goes as follows.
§ 2
is concerned with categorical and homological preliminaries.
§ 3
presents the concept of objects of type \(\mathrm{FP}_{n}\)in a Grothendieck category, studying several closure properties along with some alternative descriptions under some extra assumption in the ground category. The authors also define locally type \(\mathrm{FP}_{n}\) categories as a formal setting for the existence of objects of type \(\mathrm{FP}_{n}\).
§ 4
investigates injectivity relative to objects of type \(\mathrm{FP}_{n}\). The authors define the class \(\mathcal{FP}_{n}\)-Inj of \(\mathrm{FP}_{n}\)-injective objects, showing that this class is the right half of a complete cotorsion pair \(\left( ^{\bot_{1}}\left( \mathcal{FP} _{n}\text{-Inj}\right) ,\mathcal{FP}_{n}\text{-Inj}\right) \) cogenerated by a set in any locally type \(\mathrm{FP}_{n}\)category.
§ 5
is devoted to \(n\)-coherent categories. One of the principal results in this section is that the previous cotorsion pair is hereditary iff the ground category is \(n\)-coherent. Another important result holding in \(n\)-coherent categories is that \(\mathcal{FP}_{n}\)-Inj is a covering class.
§ 6
defines the Gorenstein \(\mathrm{FP}_{n}\)-injective objects, constructing model structures such that they form the class of fibrant objects.

MSC:

18C35 Accessible and locally presentable categories
18A25 Functor categories, comma categories
18E10 Abelian categories, Grothendieck categories
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
18G25 Relative homological algebra, projective classes (category-theoretic aspects)
18N40 Homotopical algebra, Quillen model categories, derivators

References:

[1] Adámek, J.; Rosický, J., Locally Presentable and Accessible Categories (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0795.18007 · doi:10.1017/CBO9780511600579
[2] Auslander, M.: Coherent functors. In: Proceedings of the Conference on Categorical Algebra, (La Jolla, California, 1965), pp. 189-231. Springer, New York (1966) · Zbl 0192.10902
[3] Becerril, V.; Mendoza, O.; Pérez, M.; Santiago, V., Frobenius pairs in abelian categories: Correspondences with cotorsion pairs, exact model categories, and Auslander-Buchweitz contexts, J. Homotopy Relat. Struct., 14, 1, 1-50 (2019) · Zbl 1435.18011 · doi:10.1007/s40062-018-0208-4
[4] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass, Hermann, Paris, (1972). Translated from the French · Zbl 0279.13001
[5] Bravo, D.; Estrada, S.; Iacob, A., \({\rm FP}_n\)-injective, \({\rm FP}_n\)-flat covers and preenvelopes, and Gorenstein AC-flat covers, Algebra Colloq., 25, 2, 319-334 (2018) · Zbl 1427.18007 · doi:10.1142/S1005386718000226
[6] Bravo, D., Gillespie, J., Hovey, M.: The Stable Module Category of a General Ring. Preprint (2014). arXiv:1405.5768
[7] Bravo, D.; Odabaşı, S.; Parra, CE; Pérez, MA, Torsion and torsion-free classes from objects of finite type in Grothendieck categories, J. Algebra, 608, 412-444 (2022) · Zbl 1502.18020 · doi:10.1016/j.jalgebra.2022.05.029
[8] Bravo, D.; Parra, C., Torsion pairs over n-hereditary rings, Commun. Algebra, 47, 5, 1892-1907 (2019) · Zbl 1433.18005 · doi:10.1080/00927872.2018.1524005
[9] Bravo, D.; Pérez, M., Finiteness conditions and cotorsion pairs, J. Pure Appl. Algebra, 221, 6, 1249-1267 (2017) · Zbl 1362.18019 · doi:10.1016/j.jpaa.2016.09.008
[10] Christensen, LW; Estrada, S.; Iacob, A., A Zariski-local notion of \({ F}\)-total acyclicity for complexes of sheaves, Quaest. Math., 40, 2, 197-214 (2017) · Zbl 1423.18047 · doi:10.2989/16073606.2017.1283545
[11] Costa, DL, Parameterizing families of non-Noetherian rings, Commun. Algebra, 22, 10, 3997-4011 (1994) · Zbl 0814.13010 · doi:10.1080/00927879408825061
[12] Crivei, S.; Prest, M.; Torrecillas, B., Covers in finitely accessible categories, Proc. Am. Math. Soc., 138, 4, 1213-1221 (2010) · Zbl 1213.18006 · doi:10.1090/S0002-9939-09-10178-8
[13] Enochs, EE; Estrada, S.; Odabaşı, S., Pure injective and absolutely pure sheaves, Proc. Edinb. Math. Soc., 59, 3, 623-640 (2016) · Zbl 1370.18011 · doi:10.1017/S0013091515000462
[14] Estrada, S., Gillespie, J.: Notes on Absolutely Clean Quasi-Coherent Sheaves. Private Communication
[15] Estrada, S.; Gillespie, J., The projective stable category of a coherent scheme, Proc. R. Soc. Edinb. Sect. A, 149, 1, 15-43 (2019) · Zbl 1423.18053 · doi:10.1017/S0308210517000385
[16] Gillespie, J., Kaplansky classes and derived categories, Math. Z., 257, 4, 811-843 (2007) · Zbl 1134.55016 · doi:10.1007/s00209-007-0148-x
[17] Gillespie, J., Model structures on exact categories, J. Pure Appl. Algebra, 215, 12, 2892-2902 (2011) · Zbl 1315.18019 · doi:10.1016/j.jpaa.2011.04.010
[18] Gillespie, J., Models for homotopy categories of injectives and Gorenstein injectives, Commun. Algebra, 45, 6, 2520-2545 (2017) · Zbl 1373.18007 · doi:10.1080/00927872.2016.1233215
[19] Glaz, S., Commutative Coherent Rings (1989), Berlin: Springer-Verlag, Berlin · Zbl 0745.13004
[20] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics, vol. 41. Walter de Gruyter GmbH & Co. KG, Berlin (2006). doi:10.1515/9783110199727 · Zbl 1121.16002
[21] Görtz, U.; Wedhorn, T., Algebraic Geometry I. Schemes with Examples and Exercises. Advanced Lectures in Mathematics (2010), Wiesbaden: Vieweg + Teubner, Wiesbaden · Zbl 1213.14001 · doi:10.1007/978-3-8348-9722-0
[22] Hartshorne, R.: Algebraic Geometry. Springer-Verlag, New York-Heidelberg (1977) Graduate Texts in Mathematics, No. 52 · Zbl 0367.14001
[23] Herzog, I., The Ziegler spectrum of a locally coherent Grothendieck category, Proc. Lond. Math. Soc., 74, 3, 503-558 (1997) · Zbl 0909.16004 · doi:10.1112/S002461159700018X
[24] Hovey, M., Model Categories, Mathematical Surveys and Monographs (1999), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0909.55001
[25] Hovey, M., Cotorsion pairs, model category structures, and representation theory, Math. Z., 241, 3, 553-592 (2002) · Zbl 1016.55010 · doi:10.1007/s00209-002-0431-9
[26] Jasso, G., \(n\)-Abelian and \(n\)-exact categories, Math. Z., 283, 3-4, 703-759 (2016) · Zbl 1356.18005 · doi:10.1007/s00209-016-1619-8
[27] Lang, S., Algebra, Graduate Texts in Mathematics (2002), New York: Springer-Verlag, New York · Zbl 0984.00001 · doi:10.1007/978-1-4613-0041-0
[28] Mitchell, B., Rings with several objects, Adv. Math., 8, 1-161 (1972) · Zbl 0232.18009 · doi:10.1016/0001-8708(72)90002-3
[29] Parra, C.E., Saorín, M., Virili, S.: Locally Finitely Presented and Coherent Hearts. Rev. Mat. Iberoam. (2023). https://ems.press/journals/rmi/articles/9033113
[30] Saorín, M.; Šťovíček, J., On exact categories and applications to triangulated adjoints and model structures, Adv. Math., 228, 2, 968-1007 (2011) · Zbl 1235.18010 · doi:10.1016/j.aim.2011.05.025
[31] Skljarenko, EG, Pure and finitely presentable modules, duality homomorphisms and the coherence property of a ring, Math. USSR-Sbornik, 34, 173 (2007) · Zbl 0402.16022 · doi:10.1070/SM1978v034n02ABEH001155
[32] Stenström, B., Coherent rings and \(F\, P\)-injective modules, J. Lond. Math. Soc., 2, 2, 323-329 (1970) · Zbl 0194.06602 · doi:10.1112/jlms/s2-2.2.323
[33] Stenström, B.: Rings of Quotients. Springer-Verlag, New York-Heidelberg (1975) Die Grundlehren der Mathematischen Wissenschaften, Band 217, An Introduction to Methods of Ring Theory · Zbl 0296.16001
[34] Šťovíček, J.: On Purity and Applications to Coderived and Singularity Categories. Preprint (2014). arXiv:1412.1615
[35] Ueno, K.: Algebraic Geometry. 2, Translations of Mathematical Monographs, vol. 197. American Mathematical Society, Providence, RI (2001) Sheaves and Cohomology, Translated from the 1997 Japanese Original by Goro Kato, Iwanami Series in Modern Mathematics
[36] Vasconcelos, WV, The Rings of Dimension Two (1976), New York-Basel: Marcel Dekker Inc., New York-Basel · Zbl 0352.13003
[37] Verdier, J.L.: Des catégories dérivées des catégories abéliennes. Astérisque (239), xii+253 pp.: 1996. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis (1997) · Zbl 0882.18010
[38] Weibel, CA, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[39] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research. Revised and Updated Engl. Ed., Revised and Updated Engl. Ed. Edn. Gordon and Breach Science Publishers, Philadelphia etc. (1991) · Zbl 0746.16001
[40] Xu, J., Flat Covers of Modules (1996), Berlin: Springer-Verlag, Berlin · Zbl 0860.16002
[41] Yang, G.; Liu, Z.; Liang, L., Ding projective and Ding injective modules, Algebra Colloq., 20, 4, 601-612 (2013) · Zbl 1280.16003 · doi:10.1142/S1005386713000576
[42] Zhao, T.; Pérez, MA, Relative FP-injective and FP-flat complexes and their model structures, Commun. Algebra, 47, 4, 1708-1730 (2019) · Zbl 1441.18015 · doi:10.1080/00927872.2018.1514618
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.