×

Betti numbers of curves and multiple-point loci. (English) Zbl 1508.14032

The author establishes the experimental evidence in [F.-O. Schreyer, in: Advances in algebra and geometry. Proceedings of the international conference on algebra and geometry, Hyderabad, India, December 7–12, 2001. New Delhi: Hindustan Book Agency. 263–278 (2003; Zbl 1029.14021)] proposing the value of the extremal Betti number of a curve possessing several pencils. In fact, the author provides some conditions, mainly on the pencils under which the proposed formula for the extremal Betti number holds true. The proof is along the study of Eagon-Northcott cycles of higher codimensions. In particular, he proves the existence of curves possessing two pencils of such type, and therefore with the expected exremal Betti number.

MSC:

14H51 Special divisors on curves (gonality, Brill-Noether theory)
16E05 Syzygies, resolutions, complexes in associative algebras

Citations:

Zbl 1029.14021

References:

[1] Aprodu, M., On the vanishing of higher syzygies of curves, Math. Z., 241, 1-15 (2002) · Zbl 1037.14012
[2] Aprodu, M., Remarks on syzygies of d-gonal curves, Math. Res. Lett., 12, 387-400 (2005) · Zbl 1084.14032
[3] Aprodu, M.; Farkas, G., Green’s Conjecture for smooth curves on arbitrary K3 surfaces, Compos. Math., 147, 839-851 (2011) · Zbl 1221.14039
[4] Araujo, C.; Kollár, J., Rational Curves on Varieties, Higher Dimensional Varieties and Rational Points (2003), Springer · Zbl 1080.14521
[5] Aprodu, M.; Nagel, J., Koszul Cohomology and Algebraic Geometry, University Lecture Series, vol. 52 (2010), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1189.14001
[6] Andreotti, A.; Mayer, A. L., On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 21, 189-238 (1967) · Zbl 0222.14024
[7] Arbarello, E.; Cornalba, M., Su una congettura di Petri, Comment. Math. Helv., 56, 1-37 (1981) · Zbl 0505.14002
[8] Arbarello, E.; Cornalba, M., Footnotes to a paper of Beniamino Segre, Math. Ann., 256, 341-362 (1981) · Zbl 0454.14023
[9] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J., Geometry of Algebraic Curves, Volume I, Grundlehren der Mathematischen Wissenschaften, vol. 267 (1985), Springer: Springer Heidelberg · Zbl 0559.14017
[10] Arbarello, E.; Cornalba, M.; Griffiths, P. A., Geometry of Algebraic Curves, Volume II, Grundlehren der Mathematischen Wissenschaften, vol. 268 (2011), Springer: Springer Heidelberg · Zbl 1235.14002
[11] Bothmer, H-C.v., Scrollar syzygies of general canonical curves with genus ≤8, Trans. Am. Math. Soc., 359, 465-488 (2007) · Zbl 1117.13013
[12] Bogomolov, F.; Hassett, B.; Tschinkel, Y., Constructing rational curves on K3 surfaces, Duke Math. J., 157, 535-550 (2011) · Zbl 1236.14035
[13] Bopp, C.; Schreyer, F.-O., A version of Green’s conjecture in positive characteristic, Exp. Math., 30, 475-480 (2021) · Zbl 1509.14115
[14] Coppens, M., The existence of k-gonal curves possessing exactly two linear systems \(g_k^1\), Math. Ann., 307, 291-297 (1997) · Zbl 0870.14023
[15] Ciliberto, C.; Pareschi, G., Pencils of minimal degree on curves on a K3 surface, J. Reine Angew. Math., 460, 15-36 (1995) · Zbl 0836.14022
[16] Donagi, R.; Morrison, D., Linear systems on K3 sections, J. Differ. Geom., 29, 49-64 (1989) · Zbl 0626.14006
[17] Ehbauer, S., Syzygies of points in projective space and applications, (Zero-Dimensional Schemes. Proceedings of the International Conference Held in Ravelo. Zero-Dimensional Schemes. Proceedings of the International Conference Held in Ravelo, Italy (1992))
[18] Farkas, G.; Kemeny, M., The generic Green-Lazarsfeld Secant Conjecture, Invent. Math., 203, 265-301 (2016) · Zbl 1335.14009
[19] Farkas, G.; Kemeny, M., Linear syzygies for curves of prescribed gonality, Adv. Math., 356, Article 106810 pp. (2019) · Zbl 1423.14213
[20] Farkas, G.; Rimányi, R., Quadric rank loci on moduli of curves and K3 surfaces, Ann. Sci. Éc. Norm. Supér., 53, 945-992 (2020) · Zbl 1451.14015
[21] Fulton, W., Intersection Theory, Vol. 2 (2013), Springer
[22] Green, M., Koszul cohomology and the cohomology of projective varieties, J. Differ. Geom., 19, 125-171 (1984) · Zbl 0559.14008
[23] Green, M., Quadrics of rank four in the ideal of a canonical curve, Invent. Math., 75, 85-104 (1984) · Zbl 0542.14018
[24] Graber, T.; Harris, J.; Starr, J., Families of rationally connected varieties, J. Am. Math. Soc., 16, 57-67 (2003) · Zbl 1092.14063
[25] Green, M.; Lazarsfeld, R., Special divisors on curves on a K3 surface, Invent. Math., 89, 357-370 (1987) · Zbl 0625.14022
[26] Herbert, R., Multiple Points of Immersed Manifolds, Memoirs American Math. Soc., vol. 34 (1981) · Zbl 0493.57012
[27] Huybrechts, D., Lectures on K3 Surfaces, vol. 158 (2016), Cambridge University Press · Zbl 1360.14099
[28] Harris, J.; Mumford, D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 67, 23-86 (1982) · Zbl 0506.14016
[29] Hirschowitz, A.; Ramanan, S., New evidence for Green’s Conjecture on syzygies of canonical curves, Ann. Sci. Éc. Norm. Supér., 31, 145-152 (1998) · Zbl 0923.14017
[30] Jongmans, F., Le probléme des séries speciales d’une courbe algébrique, Bull. Acad. R. Sci. Belg., 35, 1027-1041 (1949) · Zbl 0038.31302
[31] Kemeny, M., Stable Maps and Singular Curves on K3 Surfaces (2015), Universität Bonn, Thesis
[32] Kemeny, M., The moduli of singular curves on K3 surfaces, J. Math. Pures Appl., 104, 882-920 (2015) · Zbl 1330.14003
[33] Kemeny, M., Projecting syzygies of curves, Algebr. Geom., 7, 561-580 (2020) · Zbl 1448.14028
[34] Kemeny, M., Universal secant bundles and syzygies of canonical curves, Invent. Math., 223, 995-1026 (2021) · Zbl 1473.14058
[35] Kemeny, M., The rank of syzygies of canonical curves · Zbl 07840485
[36] Keem, C., On the variety of special linear systems on an algebraic curve, Math. Ann., 288, 309-322 (1990) · Zbl 0692.14002
[37] Kempf, G., On the geometry of a theorem of Riemann, Ann. Math., 178-185 (1973) · Zbl 0275.14023
[38] Kleiman, S., Multiple-point formulae I: iteration, Acta Math., 147, 13-49 (1981) · Zbl 0479.14004
[39] Lazarsfeld, R., Brill-Noether-Petri without degenerations, J. Differ. Geom., 23, 299-307 (1986) · Zbl 0608.14026
[40] Li, J.; Tian, G., Virtual moduli cycles and Gromov-Witten invariants, J. Am. Math. Soc., 11, 119-174 (1998) · Zbl 0912.14004
[41] Martens, G., On curves on K 3 surfaces, (Algebraic Curves and Projective Geometry (1989), Springer: Springer Berlin), 174-182 · Zbl 0698.14036
[42] Martens, H., On the varieties of special divisors on a curve, J. Reine Angew. Math., 227, 111-120 (1967) · Zbl 0172.46301
[43] Mayer, A., Families of K3 surfaces, Nagoya Math. J., 48, 1-17 (1972) · Zbl 0244.14012
[44] Morrison, D., On K3 surfaces with large Picard number, Invent. Math., 75, 105-121 (1984) · Zbl 0509.14034
[45] Mumford, D., Prym varieties I, (Contributions to Analysis (1974)), 325-350 · Zbl 0299.14018
[46] Patel, A., The Geometry of Hurwitz Space (2013), Harvard University, PhD thesis
[47] Sagraloff, M., Special Linear Series and Syzygies of Canonical Curves of Genus 9 (2005), Saarland University, Thesis
[48] Schreyer, F.-O., Syzygies of canonical curves and special linear series, Math. Ann., 275, 105-137 (1986) · Zbl 0578.14002
[49] Schreyer, F.-O., Some topics in computational algebraic geometry, (Advances in Algebra and Geometry. Advances in Algebra and Geometry, Hyderabad, 2001 (2003), Hindustan Book Agency), 263-278 · Zbl 1029.14021
[50] Schicho, J.; Schreyer, F.-O.; Weimann, M., Computational aspects of gonal maps and radical parametrization of curves, Appl. Algebra Eng. Commun. Comput., 24, 313-341 (2013) · Zbl 1299.14047
[51] Tyomkin, I., On Severi varieties on Hirzebruch surfaces, Int. Math. Res. Not., 23 (2007) · Zbl 1135.14026
[52] Voisin, C., Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc., 4, 363-404 (2002) · Zbl 1080.14525
[53] Voisin, C., Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math., 141, 1163-1190 (2005) · Zbl 1083.14038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.