×

Various properties of a general class of integer-valued polynomials. (English) Zbl 1508.13018

Authors’ abstract: In this paper, we study various properties for some classes of domains that are generalizations of integer-valued polynomial rings. For \(D\) an integral domain with quotient field \(K\) and \(E\) a subset of \(K\), one defines as usual Int(\(E, D\))\( := \{ f\in K[X] : f (E)\subseteq D \}\). If \(R\) is an integral domain containing \(D\), then we define Int\(_R\)(\(E, D\)) \(:= \{ f\in R[X] : f (E)\subseteq D \}\), which is called the ring of \(D\)-valued \(R\)-polynomials over \(E\). Among other things, we investigate various properties and facts around the rings Int\(_R\)(\(E, D\)), such as localization, (faithful) flatness, Krull dimension and some other transfer properties.

MSC:

13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13B30 Rings of fractions and localization for commutative rings
16D40 Free, projective, and flat modules and ideals in associative algebras
Full Text: DOI

References:

[1] Al-Rasasi, I., Izelgue, L.: Bhargava rings over subsets. In: Badawi, A., Vedadi, M., Yassemi, S., Yousefian Darani, A. (eds.) Homological and Combinatorial Methods in Algebra, SAA 2016, Springer Proceedings in Mathematics & Statistics, vol. 228, pp. 9-26. Springer, Cham (2018) · Zbl 1402.13019
[2] Anderson, DD; Anderson, DF, Generalized GCD domains, Comment. Math. Univ. St. Paul., 28, 215-221 (1979) · Zbl 0434.13001
[3] Anderson, DD; Anderson, DF; Zafrullah, M., Rings between \(D[X]\) and \(K[X]\), Houst. J. Math., 17, 109-129 (1991) · Zbl 0736.13015
[4] Arnold, JT; Matsuda, R., An almost Krull domain with divisorial height one primes, Can. Math. Bull., 29, 1, 50-53 (1986) · Zbl 0541.13008 · doi:10.4153/CMB-1986-009-6
[5] Bhargava, M.; Cahen, P-J; Yeramian, J., Finite generation properties for various rings of integer-valued polynomials, J. Algebra, 322, 4, 1129-1150 (2009) · Zbl 1177.13051 · doi:10.1016/j.jalgebra.2009.04.017
[6] Brewer, J.; Heinzer, W., Associated primes of principal ideals, Duke Math. J., 41, 1-7 (1974) · Zbl 0284.13001 · doi:10.1215/S0012-7094-74-04101-5
[7] Cahen, P.-J., Chabert, J.-L.: Coefficients et valeurs d’un polynôme. Bull. SC. Math. Série 2(95), 295-304 (1971) · Zbl 0221.13006
[8] Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials, Math. Surveys Monogr., vol. 48, Amer. Math. Soc. (1997) · Zbl 0884.13010
[9] Cahen, P-J, Integer-valued polynomials on a subset, Proc. Am. Math. Soc., 117, 919-929 (1993) · Zbl 0781.13013 · doi:10.1090/S0002-9939-1993-1116252-5
[10] Cahen, P-J; Gabelli, S.; Houston, E., Mori domains of integer-valued polynomials, J. Pure Appl. Algebra, 153, 1-15 (2000) · Zbl 0978.13010 · doi:10.1016/S0022-4049(99)00073-0
[11] Chabert, J.-L.: Les idéaux premiers de l’anneau des polynômes à valeurs entières. J. Reine Angew. Math. 293/294, 275-283 (1977) · Zbl 0349.13009
[12] Chang, GW; Kang, BG; Toan, PT, The Krull dimension of power series rings over almost Dedekind domains, J. Algebra, 438, 170-187 (2015) · Zbl 1329.13033 · doi:10.1016/j.jalgebra.2015.05.010
[13] Dessagnes, N.: Intersections d’anneaux de Mori-exemples. C. R. Math. Rep. Acad. Sci. Canada 7, 355-360 (1985) · Zbl 0599.13017
[14] El Baghdadi, S.; Izelgue, L.; Tamoussit, A., Almost Krull domains and their rings of integer-valued polynomials, J. Pure Appl. Algebra, 224, 6 (2020) · Zbl 1432.13014 · doi:10.1016/j.jpaa.2019.106269
[15] Fontana, M.; Izelgue, L.; Kabbaj, S.; Tartarone, F., On the Krull dimension of domains on integer-valued polynomials, Expo. Math., 15, 433-465 (1997) · Zbl 0920.13005
[16] Gilmer, R.: Multiplicative Ideal Theory, Queen’s Papers in Pure and Appl. Math., vol. 90. Queen’s University, Kingston (1992) · Zbl 0804.13001
[17] Gilmer, R., Overrings of Prüfer domains, J. Algebra, 4, 331-340 (1966) · Zbl 0146.26205 · doi:10.1016/0021-8693(66)90025-1
[18] Heinzer, W.; Roitman, M., Well-centered overrings of an integral domain, J. Algebra, 272, 435-455 (2004) · Zbl 1040.13002 · doi:10.1016/S0021-8693(03)00462-9
[19] Houston, E.; Lucas, T.; Viswanathan, T., Primary decomposition of divisorial ideals in Mori domains, J. Algebra, 117, 327-342 (1988) · Zbl 0675.13002 · doi:10.1016/0021-8693(88)90110-X
[20] Kang, BG, Prüfer \(v\)-multiplication domains and the ring \(R[X]_{N_v}\), J. Algebra, 123, 151-170 (1989) · Zbl 0668.13002 · doi:10.1016/0021-8693(89)90040-9
[21] Kim, H., Tamoussit, A.: Integral domains issued from associated primes. Commun. Algebra (2021)
[22] Kim, H.; Wang, FG, On LCM-stable modules, J. Algebra Appl., 13, 4, 1350133 (2014) · Zbl 1296.13020 · doi:10.1142/S0219498813501338
[23] Matsumura, H., Commutative Ring Theory (1986), Cambridge: Cambridge University Press, Cambridge · Zbl 0603.13001
[24] Mulay, S.B.: On integer-valued polynomials. In: Zero-Dimensional Commutative Rings, Lect. Notes Pur. Appl. Math., vol. 171, pp. 331-345. Dekker, New York (1995) · Zbl 0885.13013
[25] Ostrowski, A., Über ganzwertige polynome in algebraischen zahlkörpern, J. Reine Angew. Math., 149, 117-124 (1919) · JFM 47.0163.05 · doi:10.1515/crll.1919.149.117
[26] Polya, G., Über ganzwertige polynome in algebraischen zahlkörpern, J. Reine Angew. Math., 149, 79-116 (1919) · JFM 47.0163.04
[27] Richman, F., Generalized quotient rings, Proc. Am. Math. Soc., 16, 794-799 (1965) · Zbl 0145.27406 · doi:10.1090/S0002-9939-1965-0181653-1
[28] Tamoussit, A., Note on integer-valued polynomials on a residually cofinite subset, Beitr. Algebra Geom., 62, 599-604 (2021) · Zbl 1490.13020 · doi:10.1007/s13366-020-00514-7
[29] Tamoussit, A., On the ring of \(D\)-valued \(R\)-polynomials over \(E\), J. Algebra Appl. (2021) · Zbl 1484.13048 · doi:10.1142/S0219498822500876
[30] Tamoussit, A., A note on the Krull dimension of rings between \(D[X]\) and \({{\rm Int(D)}}\), Boll. Unione Mat. Ital., 14, 513-519 (2021) · Zbl 1469.13025 · doi:10.1007/s40574-021-00281-w
[31] Zafrullah, M., The \(D+XD_S[X]\) construction from GCD-domains, J. Pure Appl. Algebra, 50, 93-107 (1988) · Zbl 0656.13020 · doi:10.1016/0022-4049(88)90006-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.