×

Additive complementary dual codes over \(\mathbb{F}_4\). (English) Zbl 1507.94067

Summary: A linear code is linear complementary dual (LCD) if it meets its dual trivially. LCD codes have been a hot topic recently due to Boolean masking application in the security of embarked electronics [C. Carlet and S. Guilley, in: CIM Series Math. Sci. 3, 97–105 (2015; Zbl 1398.94209); Adv. Math. Commun. 10, No. 1, 131–150 (2016; Zbl 1352.94091)]. Additive codes over \(\mathbb{F}_4\) are \(\mathbb{F}_4\)-codes that are stable by codeword addition but not necessarily by scalar multiplication. An additive code over \(\mathbb{F}_4\) is additive complementary dual (ACD) if it meets its dual trivially. The aim of this research is to study such codes which meet their dual trivially. All the techniques and problems used to study LCD codes are potentially relevant to ACD codes. Interesting constructions of ACD codes from binary codes are given with respect to the trace Hermitian and trace Euclidean inner product. The former product is relevant to quantum codes.

MSC:

94B05 Linear codes (general theory)

Software:

Code Tables

References:

[1] Boonniyom K., Jitman S.: Complementary dual subfield linear codes over finite fields. Thai Journal of Mathematics Special issue ICMSA2015, 133-152 (2016).
[2] Calderbank, AR; Rains, EM; Shor, PW; Sloane, NJA, Quantum error correction via codes over \(\mathbb{F}_4 \), IEEE Trans. Inf. Theory, 44, 1369-1387 (1998) · Zbl 0982.94029 · doi:10.1109/18.681315
[3] Carlet, C.; Guilley, S.; Pinto, R.; Rocha-Malonek, P.; Vettori, P., Complementary dual codes for counter-measures to side-channel attacks, Coding Theory and Applications, 97-105 (2015), Berlin: Springer, CIMSMS, Berlin · Zbl 1398.94209 · doi:10.1007/978-3-319-17296-5_9
[4] Carlet, C.; Mesnager, S.; Tang, C.; Qi, Y.; Pellikaan, R., Linear codes over \(\mathbb{F}_q\) are equivalent to LCD codes for \(q>3\), IEEE Trans. Inf. Theory, 64, 4, 3010-3017 (2018) · Zbl 1392.94926 · doi:10.1109/TIT.2018.2789347
[5] Dougherty, ST; Kim, J-L; Lee, N., Additive self-dual codes over finite fields of even order, Bull. Korean Math., 55, 2, 341-357 (2018) · Zbl 1478.94121
[6] Dougherty, ST; Kim, J-L; Ozkaya, B.; Sok, L.; Solé, P., The combinatorics of LCD codes, linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4, 2-3, 116-128 (2017) · Zbl 1406.94089
[7] Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de. Accessed 01 July 2022.
[8] Guilley S.: A personal communication on July 15 (2021).
[9] Guo L.B., Liu Y., Lu L.D., Li R.H.: On construction of good quaternary additive codes. 12, 03013 (2017).
[10] Haemers, WH; Peeters, MJP; van Rijckevorsel, JM, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17, 187-209 (1999) · Zbl 0938.05062 · doi:10.1023/A:1026479210284
[11] Huffman, WC, Additive cyclic codes over \(\mathbb{F}_4\), Adv. Math. Commun., 1, 4, 427-459 (2007) · Zbl 1194.94199 · doi:10.3934/amc.2007.1.427
[12] Huffman, WC; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1099.94030 · doi:10.1017/CBO9780511807077
[13] MacWilliams, FJ; Sloane, NJA, The Theory of Error-Correcting Codes (1977), Amsterdam: North-Holland, Amsterdam · Zbl 0369.94008
[14] Massey, JL, Reversible codes, Inf. Control, 7, 3, 369-380 (1964) · Zbl 0137.37704 · doi:10.1016/S0019-9958(64)90438-3
[15] Massey, JL, Linear codes with complementary duals, Discret. Math., 106-107, 337-342 (1992) · Zbl 0754.94009 · doi:10.1016/0012-365X(92)90563-U
[16] Rains, E.; Sloane, NJA; Pless, VS; Huffman, WC, Self-dual codes, Handbook of Coding Theory (1998), Amsterdam: Elsevier, Amsterdam · Zbl 0936.94017
[17] Sendrier, N., Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discret. Math., 285, 1, 345-347 (2004) · Zbl 1048.94017 · doi:10.1016/j.disc.2004.05.005
[18] Shi, M.; Huang, D.; Sok, L.; Solé, P., Double circulant LCD codes over \(\mathbb{Z}_4\), Finite Fields Appl., 58, 133-144 (2019) · Zbl 1456.94138 · doi:10.1016/j.ffa.2019.04.001
[19] Shi, M.; Huang, D.; Sok, L.; Solé, P., Double circulant self-dual and LCD codes over Galois rings, Adv. Math. Commun., 13, 171-183 (2019) · Zbl 1407.94193 · doi:10.3934/amc.2019011
[20] Shi, M.; Li, S.; Kim, J-L; Solé, P., LCD and ACD codes over a noncom mutative non-unital ring with four elements, Cryptogr. Commun., 14, 627-640 (2022) · Zbl 1493.94056 · doi:10.1007/s12095-021-00545-4
[21] Shi M., Liu N., \({\ddot{O}}\) zbudak F., Solé P.: Additive cyclic complementary dual codes over \(\mathbb{F}_4\). Finite Fields Appl. 83, 102087 (2022). · Zbl 1508.94101
[22] Shi, M.; Özbudak, F.; Xu, L.; Solé, P., LCD codes from tridiagonal Toeplitz matrices, Finite Fields Appl., 75 (2021) · Zbl 1473.94143 · doi:10.1016/j.ffa.2021.101892
[23] Shi, M.; Zhu, H.; Qian, L.; Sok, L.; Solé, P., On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb{F}_q+u\mathbb{F}_q\), Cryptogr. Commun., 12, 53-70 (2020) · Zbl 1446.94195 · doi:10.1007/s12095-019-00363-9
[24] Sok, L.; Shi, M.; Solé, P., Construction of optimal LCD codes over large finite fields, Finite Fields Appl., 50, 138-153 (2018) · Zbl 1436.94115 · doi:10.1016/j.ffa.2017.11.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.