×

Masked unbiased principles for parameter selection in variational image restoration under Poisson noise. (English) Zbl 1507.94009

Summary: In this paper we address the problem of automatically selecting the regularization parameter in variational models for the restoration of images corrupted by Poisson noise. More specifically, we first review relevant existing unmasked selection criteria which fully exploit the acquired data by considering all pixels in the selection procedure. Then, based on an idea originally proposed by M. Carlavan and L. Blanc-Féraud [IEEE Trans. Image Process. 21, No. 4, 1834–1846 (2012; Zbl 1373.94060)] to effectively deal with dark backgrounds and/or low photon-counting regimes, we introduce and discuss the masked versions – some of them already existing – of the considered unmasked selection principles formulated by simply discarding the pixels measuring zero photons. However, we prove that such a blind masking strategy yields a bias in the resulting principles that can be overcome by introducing a novel positive Poisson distribution correctly modeling the statistical properties of the undiscarded noisy data. Such distribution is at the core of newly proposed masked unbiased counterparts of the discussed strategies. All the unmasked, masked biased and masked unbiased principles are extensively compared on the restoration of different images in a wide range of photon-counting regimes. Our tests allow to conclude that the novel masked unbiased selection strategies, on average, compare favorably with unmasked and masked biased counterparts.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing

Citations:

Zbl 1373.94060

References:

[1] Almeida, M. S C.; Figueiredo, M. A T., Parameter estimation for blind and non-blind deblurring using residual whiteness measures, IEEE Trans. Image Process., 22, 2751-63 (2013) · Zbl 1373.94018 · doi:10.1109/TIP.2013.2257810
[2] Bardsley, J. M.; Goldes, J., Regularization parameter selection methods for ill-posed poisson maximum likelihood estimation, Inverse Problems, 25 (2009) · Zbl 1176.68225 · doi:10.1088/0266-5611/25/9/095005
[3] Bertero, M.; Boccacci, P.; Desiderà, G.; Vicidomini, G., Image deblurring with poisson data: from cells to galaxies, Inverse Problems, 25 (2009) · Zbl 1186.85001 · doi:10.1088/0266-5611/25/12/123006
[4] Bertero, M.; Boccacci, P.; Talenti, G.; Zanella, R.; Zanni, L., A discrepancy principle for poisson data, Inverse Problems, 26 (2010) · Zbl 1200.62067 · doi:10.1088/0266-5611/26/10/105004
[5] Bevilacqua, F.; Lanza, A.; Pragliola, M.; Sgallari, F., Nearly exact discrepancy principle for low-count Poisson image restoration, J. Imaging, 8, 1 (2022) · doi:10.3390/jimaging8010001
[6] Bevilacqua, F.; Lanza, A.; Pragliola, M.; Sgallari, F., Whiteness-based parameter selection for Poisson data in variational image processing, Appl. Math. Modelling, 117, 197-218 (2023) · Zbl 1510.94007 · doi:10.1016/j.apm.2022.12.018
[7] Bonettini, S.; Prato, M., Accelerated gradient methods for the x-ray imaging of solar flares, Inverse Problems, 30 (2014) · Zbl 1291.94008 · doi:10.1088/0266-5611/30/5/055004
[8] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1-122 (2011) · Zbl 1229.90122 · doi:10.1561/2200000016
[9] Carlavan, M.; Blanc-Feraud, L., Sparse Poisson noisy image deblurring, IEEE Trans. Image Process., 21, 1834-46 (2012) · Zbl 1373.94060 · doi:10.1109/TIP.2011.2175934
[10] Craven, P.; Wahba, G., Smoothing noisy data with spline functions, Numer. Math., 31, 377-403 (1978) · Zbl 0377.65007 · doi:10.1007/BF01404567
[11] Eckstein, J.; Bertsekas, D. P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55, 293-318 (1992) · Zbl 0765.90073 · doi:10.1007/BF01581204
[12] Grinvald, A.; Steinberg, I. Z., On the analysis of fluorescence decay kinetics by the method of least-squares, Anal. Biochem., 59, 583-98 (1974) · doi:10.1016/0003-2697(74)90312-1
[13] Gu, C., Cross-validating non-Gaussian data, J. Comput. Graph. Stat., 1, 169-79 (1992) · doi:10.1080/10618600.1992.10477012
[14] Kunisch, K.; Bredies, K.; Pock, T., Total generalized variation, J. Imaging Sci., 3, 492-526 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[15] Lanza, A.; Pragliola, M.; Sgallari, F., Residual whiteness principle for parameter-free image restoration, Electron. Trans. Numer. Anal., 53, 329-51 (2020) · Zbl 1455.94027 · doi:10.1553/etna_vol53s329
[16] Lefkimmiatis, S.; Unser, M., Poisson image reconstruction with Hessian Schatten-norm regularization, IEEE Trans. Image Process., 22, 4314-27 (2013) · Zbl 1373.94228 · doi:10.1109/TIP.2013.2271852
[17] Lysaker, M.; Lundervold, A.; Tai, X-C, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 1579-90 (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[18] Meiniel, W.; Olivo-Marin, J. C.; Angelini, E. D., Denoising of microscopy images: a review of the state-of-the-art and a new sparsity-based method, IEEE Trans. Image Process., 27, 3842-56 (2018) · Zbl 1409.94438 · doi:10.1109/TIP.2018.2819821
[19] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-68 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[20] Serafino, D.; Landi, G.; Viola, M., Directional TGV-based image restoration under Poisson noise, J. Imaging, 7, 99 (2021) · doi:10.3390/jimaging7060099
[21] Sixou, B.; Hohweiller, T.; Ducros, N., Morozov principle for Kullback-Leibler residual term and Poisson noise, Inverse Problems Imaging, 12, 607-34 (2018) · Zbl 1398.65119 · doi:10.3934/ipi.2018026
[22] Starck, J. L.; Murtagh, F., Astronomical Image and Data Analysis (2002), Berlin: Springer, Berlin
[23] Teuber, T.; Steidl, G.; Chan, R. H., Minimization and parameter estimation for seminorm regularization models with l -divergence constraints, Inverse Problems, 29 (2013) · Zbl 1267.65046 · doi:10.1088/0266-5611/29/3/035007
[24] Wahba, G.; Xiang, D., A generalized approximate cross validation for smoothing splines with non-Gaussian data, Stat. Sin., 6, 675-92 (1996) · Zbl 0854.62044
[25] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600-12 (2004) · doi:10.1109/TIP.2003.819861
[26] Zanella, R.; Boccacci, P.; Zanni, L.; Bertero, M., Efficient gradient projection methods for edge-preserving removal of Poisson noise, Inverse Problems, 25 (2009) · Zbl 1163.65042 · doi:10.1088/0266-5611/25/4/045010
[27] Zanella, R.; Boccacci, P.; Zanni, L.; Bertero, M., Corrigendum: efficient gradient projection methods for edge-preserving removal of Poisson noise, Inverse Problems, 29 (2013) · Zbl 1284.65071 · doi:10.1088/0266-5611/29/11/119501
[28] Zanni, L.; Benfenati, A.; Bertero, M.; Ruggiero, V., Numerical methods for parameter estimation in Poisson data inversion, J. Math. Imaging Vis., 52, 397-413 (2015) · Zbl 1327.65117 · doi:10.1007/s10851-014-0553-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.