×

Diffusive hydrodynamics of inhomogenous Hamiltonians. (English) Zbl 1507.82059

Summary: We derive a large-scale hydrodynamic equation, including diffusive and dissipative effects, for systems with generic static position-dependent driving forces coupling to local conserved quantities. We show that this equation predicts entropy increase and thermal states as the only stationary states. The equation applies to any hydrodynamic system with any number of local, parity and time-symmetric conserved quantities, in arbitrary dimension. It is fully expressed in terms of elements of an extended Onsager matrix. In integrable systems, this matrix admits an expansion in the density of excitations. We evaluate exactly its two-particle-hole contribution, which dominates at low density, in terms of the scattering phase and dispersion of the quasiparticles, giving a lower bound for the extended Onsager matrix and entropy production. We conclude with a molecular dynamics simulation, demonstrating thermalisation over diffusive time scales in the Toda interacting particle model with an inhomogeneous energy field.

MSC:

82C35 Irreversible thermodynamics, including Onsager-Machlup theory
82C23 Exactly solvable dynamic models in time-dependent statistical mechanics

References:

[1] Rangamani, M., Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quantum Grav., 26 (2009) · Zbl 1181.83005 · doi:10.1088/0264-9381/26/22/224003
[2] de Boer, J.; Heller, M. P.; Pinzani-Fokeeva, N., Effective actions for relativistic fluids from holography, J. High Energy Phys. (2015) · Zbl 1388.83360 · doi:10.1007/jhep08(2015)086
[3] Lucas, A., Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys., 17 (2015) · doi:10.1088/1367-2630/17/11/113007
[4] Lucas, A.; Fong, K. C., Hydrodynamics of electrons in graphene, J. Phys.: Condens. Matter, 30 (2018) · doi:10.1088/1361-648x/aaa274
[5] Ku, M. J H., Imaging viscous flow of the Dirac fluid in graphene, Nature, 583, 537-541 (2020) · doi:10.1038/s41586-020-2507-2
[6] Scaffidi, T.; Nandi, N.; Schmidt, B.; Mackenzie, A. P.; Moore, J. E., Hydrodynamic electron flow and hall viscosity, Phys. Rev. Lett., 118 (2017) · doi:10.1103/physrevlett.118.226601
[7] Castro-Alvaredo, O. A.; Doyon, B.; Yoshimura, T., Emergent hydrodynamics in integrable quantum systems out of equilibrium, Phys. Rev. X, 6 (2016) · doi:10.1103/physrevx.6.041065
[8] Bertini, B.; Collura, M.; De Nardis, J.; Fagotti, M., Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents, Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.207201
[9] Doyon, B.; Yoshimura, T., A note on generalized hydrodynamics: inhomogeneous fields and other concepts, SciPost Phys., 2, 014 (2017) · doi:10.21468/scipostphys.2.2.014
[10] Bastianello, A.; De Luca, A.; Doyon, B.; De Nardis, J., Thermalization of a trapped one-dimensional Bose gas via diffusion, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.240604
[11] Bulchandani, V. B.; Vasseur, R.; Karrasch, C.; Moore, J. E., Solvable hydrodynamics of quantum integrable systems, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.220604
[12] Friedman, A. J.; Gopalakrishnan, S.; Vasseur, R., Diffusive hydrodynamics from integrability breaking, Phys. Rev. B, 101 (2020) · doi:10.1103/physrevb.101.180302
[13] Lopez-Piqueres, J.; Ware, B.; Gopalakrishnan, S.; Vasseur, R., Hydrodynamics of non-integrable systems from relaxation-time approximation (2020)
[14] Gopalakrishnan, S.; Vasseur, R.; Ware, B., Anomalous relaxation and the high-temperature structure factor of XXZ spin chains, Proc. Natl Acad. Sci., 116, 16250-16255 (2019) · doi:10.1073/pnas.1906914116
[15] Fava, M.; Ware, B.; Gopalakrishnan, S.; Vasseur, R.; Parameswaran, S. A., Spin crossovers and superdiffusion in the one-dimensional Hubbard model, Phys. Rev. B, 102 (2020) · doi:10.1103/physrevb.102.115121
[16] Ilievski, E.; De Nardis, J., Ballistic transport in the one-dimensional Hubbard model: the hydrodynamic approach, Phys. Rev. B, 96 (2017) · doi:10.1103/physrevb.96.081118
[17] De Nardis, J.; Gopalakrishnan, S.; Ilievski, E.; Vasseur, R., Superdiffusion from emergent classical solitons in quantum spin chains, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.070601
[18] De Nardis, J.; Medenjak, M.; Karrasch, C.; Ilievski, E., Universality classes of spin transport in one-dimensional isotropic magnets: the onset of logarithmic anomalies, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.210605
[19] Ruggiero, P.; Calabrese, P.; Doyon, B.; Dubail, J., Quantum generalized hydrodynamics, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.140603
[20] Bulchandani, V. B.; Cao, X.; Moore, J. E., Kinetic theory of quantum and classical Toda lattices, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.82056 · doi:10.1088/1751-8121/ab2cf0
[21] Doyon, B.; Spohn, H., Drude Weight for the Lieb-Liniger Bose gas, SciPost Phys., 3, 039 (2017) · doi:10.21468/scipostphys.3.6.039
[22] Doyon, B.; Spohn, H., Dynamics of hard rods with initial domain wall state, J. Stat. Mech. (2017) · Zbl 1457.82247 · doi:10.1088/1742-5468/aa7abf
[23] Schemmer, M.; Bouchoule, I.; Doyon, B.; Dubail, J., Generalized hydrodynamics on an atom chip, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.090601
[24] Malvania, N.; Zhang, Y.; Le, Y.; Dubail, J.; Rigol, M.; Weiss, D. S., Generalized hydrodynamics in strongly interacting 1D bose gases (2020)
[25] Møller, F.; Li, C.; Mazets, I.; Stimming, H-P; Zhou, T.; Zhu, Z.; Chen, X.; Schmiedmayer, J., Extension of the generalized hydrodynamics to dimensional crossover regime (2020)
[26] Scheie, A.; Sherman, N. E.; Dupont, M.; Nagler, S. E.; Stone, M. B.; Granroth, G. E.; Moore, J. E.; Tennant, D. A., Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain (2020)
[27] Landau, L. D., Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol 6 (2013), Oxford: Pergamon, Oxford
[28] Davidson, P. A., An Introduction to Magnetohydrodynamics (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0974.76002
[29] Simoncelli, M.; Marzari, N.; Cepellotti, A., Generalization of Fourier’s law into viscous heat equations, Phys. Rev. X, 10 (2020) · doi:10.1103/physrevx.10.011019
[30] Doyon, B.; Durnin, J., Free energy fluxes and the Kubo-Martin-Schwinger relation, J. Stat. Mech. (2021) · Zbl 1539.82198 · doi:10.1088/1742-5468/abefe3
[31] Onsager, L., Reciprocal relations in irreversible processes. I, Phys. Rev., 37, 405-426 (1931) · JFM 57.1168.10 · doi:10.1103/physrev.37.405
[32] Onsager, L., Reciprocal relations in irreversible processes. II, Phys. Rev., 38, 2265-2279 (1931) · Zbl 0004.18303 · doi:10.1103/physrev.38.2265
[33] Eisert, J.; Friesdorf, M.; Gogolin, C., Quantum many-body systems out of equilibrium, Nat. Phys., 11, 124-130 (2015) · doi:10.1038/nphys3215
[34] Rigol, M.; Dunjko, V.; Yurovsky, V.; Olshanii, M., Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett., 98 (2007) · doi:10.1103/physrevlett.98.050405
[35] Calabrese, P.; Essler, F. H L.; Fagotti, M., Quantum quench in the transverse-field Ising chain, Phys. Rev. Lett., 106 (2011) · doi:10.1103/physrevlett.106.227203
[36] Ilievski, E.; Quinn, E.; De Nardis, J.; Brockmann, M., String-charge duality in integrable lattice models, J. Stat. Mech. (2016) · Zbl 1456.82050 · doi:10.1088/1742-5468/2016/06/063101
[37] Ilievski, E.; De Nardis, J.; Wouters, B.; Caux, J-S; Essler, F. H L.; Prosen, T., Complete generalized Gibbs ensembles in an interacting theory, Phys. Rev. Lett., 115 (2015) · doi:10.1103/physrevlett.115.157201
[38] Vernier, E.; Cubero, A. C., Quasilocal charges and progress towards the complete GGE for field theories with nondiagonal scattering, J. Stat. Mech. (2017) · Zbl 1456.81449 · doi:10.1088/1742-5468/aa5288
[39] Bastianello, A.; Sotiriadis, S., Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories, J. Stat. Mech. (2017) · Zbl 1456.81459 · doi:10.1088/1742-5468/aa5738
[40] Essler, F. H L.; Mussardo, G.; Panfil, M., On truncated generalized Gibbs ensembles in the Ising field theory, J. Stat. Mech. (2017) · Zbl 1457.82064 · doi:10.1088/1742-5468/aa53f4
[41] Dauxois, T., Fermi, Pasta, Ulam, and a mysterious lady, Phys. Today, 61, 55-57 (2008) · doi:10.1063/1.2835154
[42] Kinoshita, T.; Wenger, T.; Weiss, D. S., A quantum Newton’s cradle, Nature, 440, 900-903 (2006) · doi:10.1038/nature04693
[43] Langen, T.; Gring, M.; Kuhnert, M.; Rauer, B.; Geiger, R.; Smith, D. A.; Mazets, I. E.; Schmiedmayer, J., Prethermalization in one-dimensional Bose gases: description by a stochastic Ornstein-Uhlenbeck process, Eur. Phys. J. Spec. Top., 217, 43-53 (2013) · doi:10.1140/epjst/e2013-01752-0
[44] Kitagawa, T.; Imambekov, A.; Schmiedmayer, J.; Demler, E., The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise, New J. Phys., 13 (2011) · Zbl 1448.81398 · doi:10.1088/1367-2630/13/7/073018
[45] Gring, M., Relaxation and prethermalization in an isolated quantum system, Science, 337, 1318-1322 (2012) · doi:10.1126/science.1224953
[46] Bertini, B.; Essler, F. H L.; Groha, S.; Robinson, N. J., Prethermalization and thermalization in models with weak integrability breaking, Phys. Rev. Lett., 115 (2015) · doi:10.1103/physrevlett.115.180601
[47] Gring, M., Relaxation and prethermalization in an isolated quantum system, Science, 337, 1318-1322 (2012) · doi:10.1126/science.1224953
[48] Mallayya, K.; Rigol, M.; De Roeck, W., Prethermalization and thermalization in isolated quantum systems, Phys. Rev. X, 9 (2019) · doi:10.1103/physrevx.9.021027
[49] Alba, V.; Fagotti, M., Prethermalization at low temperature: the scent of long-range order, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.010601
[50] Bertini, B.; Calabrese, P., Prethermalisation and thermalisation in the entanglement dynamics (2020)
[51] Huveneers, F.; Lukkarinen, J., Prethermalization in a classical phonon field: slow relaxation of the number of phonons, Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.022034
[52] Langen, T.; Gasenzer, T.; Schmiedmayer, J., Prethermalization and universal dynamics in near-integrable quantum systems, J. Stat. Mech. (2016) · Zbl 1456.81242 · doi:10.1088/1742-5468/2016/06/064009
[53] Tang, Y.; Kao, W.; Li, K-Y; Seo, S.; Mallayya, K.; Rigol, M.; Gopalakrishnan, S.; Lev, B. L., Thermalization near integrability in a dipolar quantum Newton’s cradle, Phys. Rev. X, 8 (2018) · doi:10.1103/physrevx.8.021030
[54] Bastianello, A.; Luca, A. D.; Vasseur, R., Hydrodynamics of weak integrability breaking (2021) · Zbl 1539.82058
[55] Biella, A.; Luca, A. D.; Viti, J.; Rossini, D.; Mazza, L.; Fazio, R., Energy transport between two integrable spin chains, Phys. Rev. B, 93 (2016) · doi:10.1103/physrevb.93.205121
[56] Biella, A.; Collura, M.; Rossini, D.; Luca, A. D.; Mazza, L., Ballistic transport and boundary resistances in inhomogeneous quantum spin chains, Nat. Commun., 10, 4820 (2019) · doi:10.1038/s41467-019-12784-4
[57] Pozsgay, B., Current operators in integrable spin chains: lessons from long range deformations, SciPost Phys., 8, 016 (2020) · doi:10.21468/scipostphys.8.2.016
[58] Luo, R.; Benenti, G.; Casati, G.; Wang, J., Onsager reciprocal relations with broken time-reversal symmetry, Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.022009
[59] Proesmans, K.; Van den Broeck, C., Onsager coefficients in periodically driven systems, Phys. Rev. Lett., 115 (2015) · doi:10.1103/physrevlett.115.090601
[60] Akasaki, B. A N.; de Oliveira, M. J.; Fiore, C. E., Entropy production and heat transport in harmonic chains under time-dependent periodic drivings, Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.012132
[61] Kubo, R., Statistical-mechanical theory of irreversible processes: I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, 12, 570-586 (1957) · doi:10.1143/jpsj.12.570
[62] Caux, J-S; Doyon, B.; Dubail, J.; Konik, R.; Yoshimura, T., Hydrodynamics of the interacting Bose gas in the quantum Newton cradle setup, SciPost Phys., 6, 070 (2019) · doi:10.21468/scipostphys.6.6.070
[63] Durnin, J.; Bhaseen, M. J.; Doyon, B., Non-equilibrium dynamics and weakly broken integrability (2020)
[64] Martin, P. C.; Schwinger, J., Theory of many-particle systems. I, Phys. Rev., 115, 1342-1373 (1959) · Zbl 0091.22906 · doi:10.1103/physrev.115.1342
[65] Medenjak, M.; De Nardis, J.; Yoshimura, T., Diffusion from convection, SciPost Phys., 9, 075 (2020) · doi:10.21468/scipostphys.9.5.075
[66] Doyon, B., Diffusion and superdiffusion from hydrodynamic projection (2019)
[67] De Nardis, J.; Bernard, D.; Doyon, B., Hydrodynamic diffusion in integrable systems, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.160603
[68] Medenjak, M.; De Nardis, J.; Yoshimura, T., Diffusion from convection, SciPost Phys., 9, 75 (2020) · doi:10.21468/SciPostPhys.9.5.075
[69] Gopalakrishnan, S.; Huse, D. A.; Khemani, V.; Vasseur, R., Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems, Phys. Rev. B, 98 (2018) · doi:10.1103/physrevb.98.220303
[70] De Nardis, J.; Doyon, B.; Medenjak, M.; Panfil, M., Correlation functions and transport coefficients in generalised hydrodynamics (2021)
[71] Theodorakopoulos, N.; Peyrard, M., Solitons and nondissipative diffusion, Phys. Rev. Lett., 83, 2293-2296 (1999) · doi:10.1103/physrevlett.83.2293
[72] De Nardis, J.; Bernard, D.; Doyon, B., Diffusion in generalized hydrodynamics and quasiparticle scattering, SciPost Phys., 6, 049 (2019) · doi:10.21468/scipostphys.6.4.049
[73] Bertini, B.; Collura, M.; De Nardis, J.; Fagotti, M., Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents, Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.207201
[74] Borsi, M.; Pozsgay, B.; Pristyák, L., Current operators in bethe ansatz and generalized hydrodynamics: an exact quantum-classical correspondence, Phys. Rev. X, 10 (2020) · doi:10.1103/physrevx.10.011054
[75] Yoshimura, T.; Spohn, H., Collision rate ansatz for quantum integrable systems (2020)
[76] Doyon, B., Generalized hydrodynamics of the classical Toda system, J. Math. Phys., 60 (2019) · Zbl 1427.82005 · doi:10.1063/1.5096892
[77] Doyon, B., Generalized hydrodynamics of the classical Toda system, J. Math. Phys., 60 (2019) · Zbl 1427.82005 · doi:10.1063/1.5096892
[78] Spohn, H., Generalized Gibbs ensembles of the classical Toda chain, J. Stat. Phys., 180, 4-22 (2019) · Zbl 1461.76011 · doi:10.1007/s10955-019-02320-5
[79] Cuccoli, A.; Livi, R.; Spicci, M.; Tognetti, V.; Vaia, R., Thermodynamics of the Toda chain, Int. J. Mod. Phys. B, 08, 2391-2446 (1994) · Zbl 1264.82002 · doi:10.1142/s021797929400097x
[80] Spohn, H., Ballistic space-time correlators of the classical Toda lattice, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.37063 · doi:10.1088/1751-8121/ab91d5
[81] Spohn, H., Hydrodynamic equations for the Toda lattice (2021)
[82] Mendl, C. B.; Spohn, H., High-low pressure domain wall for the classical Toda lattice (2021)
[83] Granet, E.; Essler, F., A systematic 1/c-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model, SciPost Phys., 9, 082 (2020) · doi:10.21468/scipostphys.9.6.082
[84] Scherg, S.; Kohler, T.; Sala, P.; Pollmann, F.; Bloch, I.; Aidelsburger, M., Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains (2020)
[85] Desaules, J-Y; Hudomal, A.; Turner, C. J.; Papić, Z., A proposal for realising quantum scars in the tilted 1d fermi-hubbard model (2021)
[86] Scheie, A.; Sherman, N. E.; Dupont, M.; Nagler, S. E.; Stone, M. B.; Granroth, G. E.; Moore, J. E.; Tennant, D. A., Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain, Nat. Phys., 17, 726-730 (2021) · doi:10.1038/s41567-021-01191-6
[87] Bulchandani, V. B., Kardar-Parisi-Zhang universality from soft gauge modes, Phys. Rev. B, 101 (2020) · doi:10.1103/physrevb.101.041411
[88] Ljubotina, M.; Žnidarič, M.; Prosen, T., Kardar-Parisi-Zhang physics in the quantum Heisenberg magnet, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.210602
[89] Ilievski, E.; De Nardis, J.; Gopalakrishnan, S.; Vasseur, R.; Ware, B., Superuniversality of superdiffusion (2020)
[90] Bulchandani, V. B.; Gopalakrishnan, S.; Ilievski, E., Superdiffusion in spin chains (2021) · Zbl 1539.82348 · doi:10.1088/1742-5468/ac12c7
[91] Panfil, M., The two particle-hole pairs contribution to the dynamic correlation functions of quantum integrable models, J. Stat. Mech. (2021) · Zbl 1539.82199 · doi:10.1088/1742-5468/abd30c
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.