×

Quantum trajectories for a system interacting with environment in \(N\)-photon state. (English) Zbl 1507.81132

Summary: We derive stochastic master equation for a quantum system interacting with an environment prepared in a continuous-mode \(N\)-photon state. To determine the conditional evolution of the quantum system depending on continuous in time measurements of the output field the model of repeated interactions and measurements is applied. The environment is defined as an infinite chain of harmonic oscillators which do not interact between themselves and they are prepared initially in an entangled state being a discrete analogue of a continuous-mode \(N\)-photon state. We provide not only the quantum trajectories but also the analytical formulae for the whole statistics of the output photons and the solution to the master equation. The solution in the continuous case is represented by a simple diagrammatic technique with very transparent ‘Feynmann rules’. This technique considerably simplifies the structure of the solution and enables one to find physical interpretation for the solution in terms of a few elementary processes.

MSC:

81S25 Quantum stochastic calculus
82B10 Quantum equilibrium statistical mechanics (general)

References:

[1] Cooper M, Wright L J, Söller C and Smith B J 2013 Opt. Express21 5309 · doi:10.1364/OE.21.005309
[2] Peaudecerf B, Sayrin C, Zhou X, Rybarczyk T, Gleyzes S, Dotsenko I, Raimond J M, Brune M and Haroche S 2013 Phys. Rev. A 87 042320 · doi:10.1103/PhysRevA.87.042320
[3] Reiserer A and Rempe G 2015 Rev. Mod. Phys.87 1379 · doi:10.1103/RevModPhys.87.1379
[4] Konyk W and Gea-Banacloche J 2016 Phys. Rev. A 93 063807 · doi:10.1103/PhysRevA.93.063807
[5] Nysteen A, Kristensen P T, McCutcheon D P S, Kaer P and MØrk J 2015 New J. Phys.17 023030 · Zbl 1452.81117 · doi:10.1088/1367-2630/17/2/023030
[6] Shi T and Sun C P 2009 Phys. Rev. B 79 205111 · doi:10.1103/PhysRevB.79.205111
[7] See T F, Noh Ch and Angelakis D G 2017 Phys. Rev. A 95 053845 · doi:10.1103/PhysRevA.95.053845
[8] Roulet A and Scarani V 2016 New J. Phys.18 093035 · Zbl 1456.81476 · doi:10.1088/1367-2630/18/9/093035
[9] Gheri M K, Ellinger K, Pellizzari T and Zoller P 1998 Fortschr. Phys.46 401-15 · doi:10.1002/(SICI)1521-3978(199806)46:4/5<401::AID-PROP401>3.0.CO;2-W
[10] Domokos P, Horak P and Ritsch H 2002 Phys. Rev. A 65 033832 · doi:10.1103/PhysRevA.65.033832
[11] Gough J E, James M R and Nurdin H I 2011 50th IEEE Conf. on Decision and Control and European Control Conf. (Piscataway, NJ: IEEE) pp 5570-6 · doi:10.1109/CDC.2011.6160675
[12] Wang Y, Minář J, Sheridan L and Scarani V 2011 Phys. Rev. A 83 063842 · doi:10.1103/PhysRevA.83.063842
[13] Wang Y, Minář J, Hétet G and Scarani V 2012 Phys. Rev. A 85 013823 · doi:10.1103/PhysRevA.85.013823
[14] Baragiola B Q, Cook R L, Brańczyk A M and Combes J 2012 Phys. Rev. A 86 013811 · doi:10.1103/PhysRevA.86.013811
[15] Rag H S and Gea-Banacloche J 2017 Phys. Rev. A 96 033817 · doi:10.1103/PhysRevA.96.033817
[16] Gough J E, James M R, Nurdin H I and Combes J 2012 Phys. Rev. A 86 043819 · doi:10.1103/PhysRevA.86.043819
[17] Gough J E, James M R and Nurdin H I 2012 Phil. Trans. R. Soc. A 370 5408 · Zbl 1353.81070 · doi:10.1098/rsta.2011.0524
[18] Gough J E, James M R and Nurdin H I 2013 Quantum Inf. Process.12 1469 · Zbl 1267.81087 · doi:10.1007/s11128-012-0373-z
[19] Gough J E, James M R and Nurdin H I 2014 New J. Phys.16 075008 · Zbl 1451.81291 · doi:10.1088/1367-2630/16/7/075008
[20] Gough J E and Zhang G 2015 EPJ Quantum Technol.2 15 · doi:10.1140/epjqt/s40507-015-0027-z
[21] Dong Z, Zhang G and Amini N H 2016 American Control Conf. (Piscataway, NJ: IEEE) pp 3011-5 · doi:10.1109/WCICA.2016.7578675
[22] Song H T, Zhang G F and Xi Z R 2016 SIAM J. Control Optim.54 1602 · Zbl 1339.93110 · doi:10.1137/15M1023099
[23] Pan Y, Dong D and Zhang G F 2016 New. J. Phys.18 033004 · Zbl 1456.81291 · doi:10.1088/1367-2630/18/3/033004
[24] Dąbrowska A, Sarbicki G and Chruściński D 2017 Phys. Rev. A 96 053819 · doi:10.1103/PhysRevA.96.053819
[25] Baragiola B Q and Combes J 2017 Phys. Rev. A 96 023819 · doi:10.1103/PhysRevA.96.023819
[26] Dąbrowska A 2018 Open Syst. Inf. Dyn.25 1850007 · Zbl 1401.81096 · doi:10.1142/S1230161218500075
[27] Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer) · Zbl 1151.81300
[28] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press) · Zbl 1053.81001
[29] Gardiner C W and Zoller P 2010 Quantum Noise (Berlin: Springer)
[30] Wiseman H M and Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press) · Zbl 1350.81004
[31] Belavkin V P 1989 J. Phys. A: Math. Gen.22 L1109 · doi:10.1088/0305-4470/22/23/006
[32] Belavkin V P 1990 J. Math. Phys.31 2930 · Zbl 0718.47035 · doi:10.1063/1.528946
[33] Barchielli A and Belavkin V P 1991 J. Phys. A: Math. Gen.24 1495 · doi:10.1088/0305-4470/24/7/022
[34] Gross J A, Caves C M, Milburn G J and Combes J 2018 Quantum Sci. Technol.3 024005 · doi:10.1088/2058-9565/aaa39f
[35] Barchielli A 2006 Lecture Notes in Mathematics 1882 (Berlin: Springer) pp 207-91 · Zbl 1142.81014 · doi:10.1007/3-540-33967-1_5
[36] Gardiner C W and Collet M J 1985 Phys. Rev. A 31 3761 · doi:10.1103/PhysRevA.31.3761
[37] Hudson R L and Parthasarathy K R 1984 Commun. Math. Phys.93 301 · Zbl 0546.60058 · doi:10.1007/BF01258530
[38] Parthasarathy K R 1992 An Introduction to Quantum Stochastic Calculus (Basel: Birkhäuser) · Zbl 0751.60046
[39] Attal S and Pautrat Y 2006 Ann. Henri Poincaré7 59 · Zbl 1099.81040 · doi:10.1007/s00023-005-0242-8
[40] Pellegrini C 2008 Ann. Probab.36 2332 · Zbl 1167.60006 · doi:10.1214/08-AOP391
[41] Pellegrini C and Petruccione F 2009 J. Phys. A: Math. Teor.42 425304 · Zbl 1179.81021 · doi:10.1088/1751-8113/42/42/425304
[42] Pellegrini C 2010 Stoch. Proc. App.120 1722 · Zbl 1204.81110
[43] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys.17 821 · Zbl 1446.47009 · doi:10.1063/1.522979
[44] Lindblad G 1976 Commun. Math. Phys.48 119 · Zbl 0343.47031 · doi:10.1007/BF01608499
[45] Ciccarello F 2017 Quantum Meas. Quantum Metrol.4 53
[46] Altamirano N, Corona-Ugalde P, Mann R B and Zych M 2017 New. J. Phys.19 013035 · Zbl 1512.81006 · doi:10.1088/1367-2630/aa551b
[47] Goetsch P and Graham R 1994 Phys. Rev. A 50 5242 · doi:10.1103/PhysRevA.50.5242
[48] Brun T A 2002 Am. J. Phys.70 719 · doi:10.1119/1.1475328
[49] Gough J and Sobolev A 2004 Open Syst. Inf. Dyn.11 235 · Zbl 1086.81057 · doi:10.1023/B:OPSY.0000047568.89682.10
[50] Bouten L, Handel R and James M R 2009 SIAM Rev.51 239 · Zbl 1167.93028 · doi:10.1137/060671504
[51] Fischer K A, Trivedi R, Ramasesh V, Siddiqi I and Vučković J 2018 Quantum2 69 · doi:10.22331/q-2018-05-28-69
[52] Blow K J, Loudon R, Phoenix S J D and Sheperd T J 1990 Phys. Rev. A 42 4102 · doi:10.1103/PhysRevA.42.4102
[53] Loudon R 2000 The Quantum Theory of Light 3rd edn (Oxford: Oxford University Press) · Zbl 1009.81003
[54] Ou Z Y 2006 Phys. Rev. A 74 063808 · doi:10.1103/PhysRevA.74.063808
[55] Rohde P P, Mauerer W and Silberhorn Ch 2007 New J. Phys.9 91 · doi:10.1088/1367-2630/9/4/091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.