×

Quantum channel simulation of phylogenetic branching models. (English) Zbl 1507.81060

Summary: Quantum channel simulations constructing probability tensors for biological multi-taxa in phylogenetics are proposed. These are given in terms of positive trace preserving maps (quantum channels), operating on quantum density matrices, using evolving systems of quantum walks with multiple walkers. Simulation of a variety of standard phylogenetic branching models, applying on trees of various topologies, is constructed using appropriate decoherent quantum circuits. For the sequences of biological characters so modelled, quantum simulations of statistical inference for them are constructed, given appropriate aligned molecular sequence data. This is achieved by the introduction of a quantum pruning map, operating on likelihood operator observables, utilizing state-observable duality and quantum measurement theory. More general stategies for related quantum simulation targets are also discussed.

MSC:

81P47 Quantum channels, fidelity
94A40 Channel models (including quantum) in information and communication theory
81P68 Quantum computation
68Q12 Quantum algorithms and complexity in the theory of computing

Software:

RAxML

References:

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) · Zbl 1049.81015
[2] Arndt M, Juffmann T and Vedral V 2009 Quantum physics meets biology HFSP J.3 386-400 · doi:10.2976/1.3244985
[3] Felsenstein J 2004 Inferring Phylogenies (Sunderland: Sinauer Associates)
[4] Steel M 2016 Phylogeny: Discrete and Random Processes in Evolution (Philadelphia, PA: SIAM) · Zbl 1361.92001 · doi:10.1137/1.9781611974485
[5] Chor B and Tuller T 2005 Maximum likelihood of evolutionary trees is hard Annual Int. Conf. on Research in Computational Molecular Biology (Berlin: Springer) pp 296-310 · Zbl 1119.92349 · doi:10.1007/11415770_23
[6] Felsenstein J 1981 Evolutionary trees from DNA sequences: a maximum likelihood approach J. Mol. Evol.17 368-76 · doi:10.1007/BF01734359
[7] Schumacher B 1996 Sending entanglement through noisy quantum channels Phys. Rev. A 54 2614 · doi:10.1103/PhysRevA.54.2614
[8] Jarvis P D and Bashford J D 2001 Quantum field theory and phylogenetic branching J. Phys. A: Math. Gen.34 L703-7 · Zbl 0998.81106 · doi:10.1088/0305-4470/34/18/310
[9] Sumner J G, Charleston M A, Jermiin L S and Jarvis P D 2008 Markov invariants, plethysms, and phylogenetics J. Theor. Biol.253 601-15 · Zbl 1398.92188 · doi:10.1016/j.jtbi.2008.04.001
[10] Sumner J G, Holland B H and Jarvis P D 2012 The algebra of the general Markov model on trees and networks Bull. Math. Biol.74 858-80 · Zbl 1235.92037 · doi:10.1007/s11538-011-9691-z
[11] Davies E B and Lewis J T 1970 An operational approach to quantum probability Commun. Math. Phys.17 239-60 · Zbl 0194.58304 · doi:10.1007/BF01647093
[12] Kraus K 1983 States, Effects and Operations: Fundamental Notions of Quantum Theory(Lecture Notes in Physics vol 190) (Berlin: Springer) · Zbl 0545.46049 · doi:10.1007/3-540-12732-1
[13] Ozawa M 1984 Quantum measuring processes of continuous observables J. Math. Phys.25 79-87 · doi:10.1063/1.526000
[14] Watrous J 2018 The Theory of Quantum Information (Cambridge: Cambridge University Press) · Zbl 1393.81004 · doi:10.1017/9781316848142
[15] Marshall A W, Olkin I and Arnold B C 1979 Inequalities: Theory of Majorization and its Applications vol 143 (Berlin: Springer) · Zbl 0437.26007
[16] Felsenstein J 2008 Multiple regressions with continuous and categorical data. R-sig-phylo mailing list https://stat.ethz.ch/pipermail/r-sig-phylo/2008-April/000053.html
[17] Felsenstein J 2014 On Brownian motion, phylogenies and quantitative genetics (Video postings www.youtube.com/watch?v=cvhmC9i6YsUandv=0RRvrilrWng)
[18] Kempe J 2003 Quantum random walks: an introductory overview Contemp. Phys.44 307-27 · doi:10.1080/00107151031000110776
[19] Aharonov D, Ambainis A, Kempe J and Vazirani U 2001 Quantum walks on graphs Proc. of the 33rd Annual ACM Symp. on Theory of computing (New York: ACM) pp 50-9 · Zbl 1323.81020
[20] Ambainis A, Bach E, Nayak A, Vishwanath A and Watrous J 2001 One-dimensional quantum walks Proc. of the 33rd Annual ACM Symp. on Theory of Computing (New York: ACM) pp 37-49 · Zbl 1323.81021
[21] Jukes T H and Cantor C R 1969 Evolution of protein molecules Mammalian Protein Metabolism (New York: Academic) pp 21-132 · doi:10.1016/B978-1-4832-3211-9.50009-7
[22] Kimura M 1980 A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences J. Molecular Evol.16 111-20 · doi:10.1007/BF01731581
[23] Kimura M 1981 Estimation of evolutionary distances between homologous nucleotide sequences Proc. Natl Acad. Sci.78 454-8 · Zbl 0511.92013 · doi:10.1073/pnas.78.1.454
[24] Bengtsson I, Ericsson Å, Kuś M, Tadej W and Życzkowski K 2005 Birkhoff’s polytope and unistochastic matrices, n = 3 and n = 4 Commun. Math. Phys.259 307-24 · Zbl 1081.60539 · doi:10.1007/s00220-005-1392-8
[25] Ellinas D and Smyrnakis I 2005 Walk driven by an optical cavity J. Opt. B: Quantum Semiclass. Opt.7 S152 · doi:10.1088/1464-4266/7/7/004
[26] Casanellas M and Sullivant S 2005 The strand symmetric model Algebraic Statistics for Computational Biology (New York: Cambridge University Press) pp 305-21 · Zbl 1374.60139 · doi:10.1017/CBO9780511610684.020
[27] Jarvis P D and Sumner J G 2016 Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model J. Math. Biol.73 259-82 · Zbl 1343.92352 · doi:10.1007/s00285-015-0951-7
[28] Fuchs C A and Jacobs K 2001 Information-tradeoff relations for finite-strength quantum measurements Phys. Rev. A 63 062305 · doi:10.1103/PhysRevA.63.062305
[29] Sumner J G, Fernández-Sánchez J and Jarvis P D 2012 Lie Markov models J. Theor. Biol.298 16-31 · Zbl 1397.92515 · doi:10.1016/j.jtbi.2011.12.017
[30] Fernández-Sánchez J, Sumner J G, Jarvis P D and Woodhams M D 2015 Lie Markov models with purine/pyrimidine symmetry J. Math. Biol.70 855-91 · Zbl 1339.60111 · doi:10.1007/s00285-014-0773-z
[31] Woodhams M D, Fernández-Sánchez J and Sumner J G 2015 A new hierarchy of phylogenetic models consistent with heterogeneous substitution rates Syst. Biol.64 638-50 · doi:10.1093/sysbio/syv021
[32] Jarvis P D and Sumner J G 2018 Systematics and symmetry in molecular phylogenetic modelling: perspectives from physics (arXiv:1809.03078v2)
[33] Stamatakis A 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models Bioinformatics22 2688-90 · doi:10.1093/bioinformatics/btl446
[34] Sumner J G and Charleston M A 2010 Phylogenetic estimation with partial likelihood tensors J. Theor. Biol.262 413-24 · Zbl 1403.92177 · doi:10.1016/j.jtbi.2009.09.037
[35] Ellinas D and Jarvis P D 2018 Maximum likelihood parameter estimation via reluctant discrete quantum walk (in preparation)
[36] Mitchell A, Mitter C and Regier J C 2000 More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analyses of noctuoidea (insecta: Lepidoptera) Syst. Biol.49 202-24 · doi:10.1093/sysbio/49.2.202
[37] Feynman R 1982 Simulating physics with computers Int. J. Theor. Phys.21 467-88 · doi:10.1007/BF02650179
[38] Lloyd S 1996 Universal quantum simulators Science273 1073-8 · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[39] Somma R, Ortiz G, Gubernatis J E, Knill E and Laflamme R 2002 Simulating physical phenomena by quantum networks Phys. Rev. A 65 042323 · Zbl 0998.81011 · doi:10.1103/PhysRevA.65.042323
[40] Buluta I and Nori F 2009 Quantum simulators Science326 108-11 · doi:10.1126/science.1177838
[41] Cirac J I and Goals Z P 2012 Opportunities in quantum simulation Nat. Phys.8 264-6 · doi:10.1038/nphys2275
[42] Johnson T H, Clark S R and Jaksch D 2014 What is a quantum simulator? EPJ Quantum Technol.1 10 · doi:10.1140/epjqt10
[43] Angelakis D G 2017 Quantum Simulations with Photons and Polaritons (Berlin: Springer) · doi:10.1007/978-3-319-52025-4
[44] Streltsov A, Adesso G and Plenio M B 2017 Colloquium: quantum coherence as a resource Rev. Mod. Phys.89 041003 · doi:10.1103/RevModPhys.89.041003
[45] Steel M 2001 (private communication)
[46] Daskalakis C, Mossel E and Roch S 2011 Evolutionary trees and the Ising model on the Bethe lattice: a proof of Steel’s conjecture Probab. Theory Rel. Fields149 149-89 · Zbl 1221.92063 · doi:10.1007/s00440-009-0246-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.