×

Numerical simulation of droplet evaporation in three-component multiphase flows using lattice Boltzmann method. (English) Zbl 1507.76163

Summary: In this article, we present a numerical study of liquid droplet evaporation in three-component multiphase flows formulated on the basis of the lattice Boltzmann model. The main application of this research is the evaporation process in liquid propellant rocket engines, and therefore, the well-known fuels and oxidizers such as hydrogen and oxygen have been assigned to droplets material. A three-fluid (incompressible and immiscible) system is considered, and the interfaces of three fluids are captured by the Cahn-Hilliard flow model. A recent ternary-fluid model is developed to consider all the three fluids in phase-change phenomena for the first time. The present LB model is validated against some analytical and numerical solutions to evaluate the developed model accuracy in binary- and ternary-fluid systems. Effects of some related non-dimensional numbers on the droplets evaporation rate are studied, and velocity field and temperature contour are presented and analyzed. As a noticeable result, the higher evaporation rate is obtained at lower Reynolds number of droplets. Finally, as a more practical application, the evaporation of a hydrogen droplet and a few surrounded oxygen droplets in different conditions is studied. The results show that the increase in oxygen droplet numbers has a different effect on hydrogen and oxygen evaporation rates.

MSC:

76M28 Particle methods and lattice-gas methods
76T30 Three or more component flows
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Williams, A., Combustion of Liquid Fuel Sprays (1976), United Kingdom: Butterworth-Heinemann, United Kingdom
[2] Faeth, GM, Current status of droplet and liquid combustion, Prog. Energy Combust. Sci., 3, 191-224 (1977) · doi:10.1016/0360-1285(77)90012-0
[3] Law, CK, Recent advances in droplet vaporization and combustion, Prog. Energy Combust. Sci., 8, 171-201 (1982) · doi:10.1016/0360-1285(82)90011-9
[4] Sirignano, WA, Fuel droplet vaporization and spray combustion theory, Prog. Energy Combust. Sci., 9, 291-322 (1983) · doi:10.1016/0360-1285(83)90011-4
[5] Aggarwal, SK; Peng, F., A review of droplet dynamics and vaporization modeling for engineering calculations, J. Eng. Gas Turbines Power., 117, 453-461 (1995) · doi:10.1115/1.2814117
[6] Sazhin, SS, Advanced models of fuel droplet heating and evaporation, Prog. Energy Combust. Sci., 32, 162-214 (2006) · doi:10.1016/j.pecs.2005.11.001
[7] Tonini, S.; Cossali, GE, An exact solution of the mass transport equations for spheroidal evaporating drops, Int. J. Heat Mass Transf., 60, 236-240 (2013) · doi:10.1016/j.ijheatmasstransfer.2013.01.001
[8] Tonini, S.; Cossali, GE, An evaporation model for oscillating spheroidal drops, Int. Commun. Heat Mass Transf., 51, 18-24 (2014) · doi:10.1016/j.icheatmasstransfer.2013.12.001
[9] Tonini, S.; Cossali, GE, One-dimensional analytical approach to modelling evaporation and heating of deformed drops, Int. J. Heat Mass Transf., 97, 301-307 (2016) · doi:10.1016/j.ijheatmasstransfer.2016.02.004
[10] Ni, Z.; Han, K.; Zhao, C.; Chen, H.; Pang, B., Numerical simulation of droplet evaporation characteristics of multi-component acetone-butanol-ethanol and diesel blends under different environments, Fuel, 230, 27-36 (2018) · doi:10.1016/j.fuel.2018.05.038
[11] Daïf, A.; Bouaziz, M.; Chesneau, X.; Ali Chérif, A., Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model, Exp. Therm. Fluid Sci., 18, 4, 282-290 (1998) · doi:10.1016/S0894-1777(98)10035-3
[12] Abramzon, B.; Sirignano, WA, Droplet vaporization model for spray combustion calculations, Int. J. Heat Mass Transf., 32, 1605-1618 (1989) · doi:10.1016/0017-9310(89)90043-4
[13] Le Clercq, PC; Bellan, J., Direct numerical simulation of a transitional temporal mixing layer laden with multicomponent-fuel evaporating drops using continuous thermodynamics, Phys. Fluids., 16, 1884-1907 (2004) · Zbl 1186.76313 · doi:10.1063/1.1688327
[14] Birouk, M.; Gökalp, I., Current status of droplet evaporation in turbulent flows, Prog. Energy Combust. Sci., 32, 408-423 (2006) · doi:10.1016/j.pecs.2006.05.001
[15] Kitano, T.; Nishio, J.; Kurose, R.; Komori, S., Evaporation and combustion of multicomponent fuel droplets, Fuel, 136, 219-225 (2014) · doi:10.1016/j.fuel.2014.07.045
[16] Millán-Merino, A.; Fernández-Tarrazo, E.; Sánchez-Sanz, M., Theoretical and numerical analysis of the evaporation of mono—and multicomponent single fuel droplets, J. Fluid Mech. (2021) · Zbl 1461.76460 · doi:10.1017/jfm.2020.950
[17] Connington, K.; Lee, T., Lattice Boltzmann simulations of forced wetting transitions of drops on superhydrophobic surfaces, J. Comput. Phys., 250, 601-615 (2013) · doi:10.1016/j.jcp.2013.05.012
[18] Williams, S.; Carter, J.; Oliker, L.; Shalf, J.; Yelick, K., Optimization of a lattice Boltzmann computation on state-of-the-art multicore platforms, J. Parallel Distrib. Comput., 69, 762-777 (2009) · doi:10.1016/j.jpdc.2009.04.002
[19] Schönherr, M.; Kucher, K.; Geier, M.; Stiebler, M.; Freudiger, S.; Krafczyk, M., Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs, Comput. Math. with Appl., 61, 3730-3743 (2011) · doi:10.1016/j.camwa.2011.04.012
[20] Chen, S.; Doolen, GD, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364 (1998) · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[21] He, X.; Doolen, GD, Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows, J. Stat. Phys, 107, 309-328 (2002) · Zbl 1007.82020 · doi:10.1023/A:1014527108336
[22] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E., 47, 1815-1819 (1993) · doi:10.1103/PhysRevE.47.1815
[23] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 152, 642-663 (1999) · Zbl 0954.76076 · doi:10.1006/jcph.1999.6257
[24] Lee, T., Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids, Comput. Math. with Appl., 58, 987-994 (2009) · Zbl 1189.76414 · doi:10.1016/j.camwa.2009.02.017
[25] Lee, T.; Lin, CL, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 16-47 (2005) · Zbl 1087.76089 · doi:10.1016/j.jcp.2004.12.001
[26] Lee, T.; Fischer, PF, Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases, Phys. Rev. E, 74, 046709 (2006) · doi:10.1103/PhysRevE.74.046709
[27] Lee, T.; Liu, L., Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 8045-8063 (2010) · Zbl 1426.76603 · doi:10.1016/j.jcp.2010.07.007
[28] Safari, H.; Rahimian, MH; Krafczyk, M., Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow, Phys. Rev. E, 88, 013304 (2013) · doi:10.1103/PhysRevE.88.013304
[29] Begmohammadi, A.; Farhadzadeh, M.; Rahimian, MH, Simulation of pool boiling and periodic bubble release at high density ratio using lattice Boltzmann method, Int. Commun. Heat Mass Transf., 61, 78-87 (2015) · doi:10.1016/j.icheatmasstransfer.2014.12.018
[30] Begmohammadi, A.; Rahimian, MH; Farhadzadeh, M.; Hatani, MA, Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method, Comput. Math. Appl., 71, 1861-1874 (2016) · Zbl 1443.65259 · doi:10.1016/j.camwa.2016.02.033
[31] Hatani, MA; Farhadzadeh, M.; Rahimian, MH, Investigation of vapor condensation on a flat plate and horizontal cryogenic tube using lattice Boltzmann method, Int. Commun. Heat Mass Transf., 66, 218-225 (2015) · doi:10.1016/j.icheatmasstransfer.2015.06.011
[32] Latifiyan, N.; Farhadzadeh, M.; Hanafizadeh, P.; Rahimian, MH, Numerical study of droplet evaporation in contact with hot porous surface using lattice Boltzmann method, Int. Commun. Heat Mass Transf., 71, 56-74 (2016) · doi:10.1016/j.icheatmasstransfer.2015.12.017
[33] Ashna, M.; Rahimian, MH; Fakhari, A., Extended lattice Boltzmann scheme for droplet combustion, Phys. Rev. E., 95, 053301 (2017) · doi:10.1103/PhysRevE.95.053301
[34] Ashna, M.; Rahimian, MH, LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime, Int. J. Heat Mass Transf., 109, 520-536 (2017) · doi:10.1016/j.ijheatmasstransfer.2017.01.108
[35] Haghani-Hassan-Abadi, R.; Rahimian, MH, Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid, Int. J. Heat Mass Transf., 127, 704-716 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.07.071
[36] Haghani-Hassan-Abadi, R.; Rahimian, MH, Axisymmetric lattice Boltzmann model for simulation of ternary fluid flows, Acta Mech., 231, 2323-2334 (2020) · Zbl 1436.76060 · doi:10.1007/s00707-020-02663-1
[37] Shi, Y.; Wang, XP, Modeling and simulation of dynamics of three-component flows on solid surface, Jpn. J. Ind. Appl. Math., 31, 611-631 (2014) · Zbl 1308.76290 · doi:10.1007/s13160-014-0151-7
[38] Boyer, F.; Lapuerta, C., Study of a three component Cahn-Hilliard flow model, Math. Model. Numer. Anal., 40, 653-687 (2006) · Zbl 1173.35527 · doi:10.1051/m2an:2006028
[39] Bao, J.; Schaefer, L., Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios, Appl. Math. Model., 37, 1860-1871 (2013) · Zbl 1349.76662 · doi:10.1016/j.apm.2012.04.048
[40] Yuan, P.; Schaefer, L., Equations of state in a lattice Boltzmann model, Phys. Fluids., 18 (2006) · Zbl 1185.76872 · doi:10.1063/1.2187070
[41] Semprebon, C.; Krüger, T.; Kusumaatmaja, H., Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles, Phys. Rev. E. (2016) · doi:10.1103/PhysRevE.93.033305
[42] Shi, Y.; Tang, GH; Wang, Y., Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver, J. Comput. Phys., 314, 228-243 (2016) · Zbl 1349.76733 · doi:10.1016/j.jcp.2016.03.011
[43] Liang, H.; Shi, BC; Chai, ZH, Lattice Boltzmann modeling of three-phase incompressible flows, Phys. Rev. E., 93, 013308 (2016) · doi:10.1103/PhysRevE.93.013308
[44] Haghani-Hassan-Abadi, R.; Fakhari, A.; Rahimian, MH, Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods, Phys. Rev. E., 97, 033312 (2018) · doi:10.1103/PhysRevE.97.033312
[45] Haghani-Hassan-Abadi, R.; Rahimian, MH; Fakhari, A., Conservative phase-field lattice-Boltzmann model for ternary fluids, J. Comput. Phys., 374, 668-691 (2018) · Zbl 1416.76238 · doi:10.1016/j.jcp.2018.07.045
[46] Jacqmin, D.: An energy approach to the continuum surface tension method. In: 34th Aerosp. Sci. Meet. Exhib, American Institute of Aeronautics and Astronautics Inc, AIAA, 1996. doi:10.2514/6.1996-858
[47] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B.; Quintard, M., Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media., 82, 463-483 (2010) · doi:10.1007/s11242-009-9408-z
[48] He, X.; Shan, X.; Doolen, GD, Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E, 57, R13-R16 (1998) · doi:10.1103/PhysRevE.57.R13
[49] He, X.; Luo, LS, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E., 55, R6333 (1997) · doi:10.1103/PhysRevE.55.R6333
[50] Zu, YQ; He, S., Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts, Phys. Rev. E., 87, 043301 (2013) · doi:10.1103/PhysRevE.87.043301
[51] Kim, J., Phase field computations for ternary fluid flows, Comput. Methods Appl. Mech. Eng., 196, 4779-4788 (2007) · Zbl 1173.76423 · doi:10.1016/j.cma.2007.06.016
[52] Mohammadi-Shad, M.; Lee, T., Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver, Phys. Rev. E., 96, 013306 (2017) · doi:10.1103/PhysRevE.96.013306
[53] Guo, Z.; Shi, B.; Zheng, C., A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Methods Fluids., 39, 325-342 (2002) · Zbl 1014.76071 · doi:10.1002/fld.337
[54] Inamuro, T.; Yoshino, M.; Inoue, H.; Mizuno, R.; Ogino, F., A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem, J. Comput. Phys., 179, 201-215 (2002) · Zbl 1065.76164 · doi:10.1006/jcph.2002.7051
[55] Mohamad, AA, Lattice Boltzmann Method, Springer, London (2011) · Zbl 1247.80003 · doi:10.1007/978-0-85729-455-5
[56] Chopard, B.; Falcone, JL; Latt, J., The lattice Boltzmann advection-diffusion model revisited, Eur. Phys. J. Spec. Top, 171, 1, 245-249 (2009) · doi:10.1140/epjst/e2009-01035-5
[57] Huang, HB; Lu, XY; Sukop, MC, Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations, J. Phys. A Math. Theor., 44, 055001 (2011) · Zbl 1370.76144 · doi:10.1088/1751-8113/44/5/055001
[58] Jiang, TL; Liu, CC; Chen, WS, Convective fuel droplet burning accompanied by an oxidizer droplet, Combust. Sci. Technol., 97, 271-301 (1994) · doi:10.1080/00102209408935381
[59] Karami, N.; Rahimian, MH, Numerical simulation of droplet evaporation on a hot surface near Leidenfrost regime using multiphase lattice Boltzmann method, Appl. Math. Comput., 312, 91-108 (2017) · Zbl 1426.76702 · doi:10.1016/j.amc.2017.05.038
[60] Jiang, TL; Chiu, H., Combustion of a fuel droplet surrounded by oxidizer droplets, ASME, J. Heat Transfer., 113, 959-965 (1991) · doi:10.1115/1.2911228
[61] Sadeghi, R.; Shadloo, MS; Abdollahzadeh Jamalabadi, MY; Karimipou, A., A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling, Int. Commun. Heat Mass Transf., 79, 58-66 (2016) · doi:10.1016/j.icheatmasstransfer.2016.10.009
[62] Sadeghi, R.; Shadloo, MS, Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method, Numer. Heat. Transf. Part A: Appl., 71, 560-574 (2017) · doi:10.1080/10407782.2016.1277936
[63] Sadeghi, R.; Shadloo, MS; Hopp-Hirschler, M.; Hadjadj, A.; Nieken, U., Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media, Comput. Math. with Appl., 75, 2445-2465 (2018) · Zbl 1409.76117 · doi:10.1016/j.camwa.2017.12.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.