×

A phase-field cohesive zone model integrated with cell-based smoothed finite element method for quasi-brittle fracture simulations of concrete at mesoscale. (English) Zbl 1507.74386

Summary: In this work, a phase field cohesive zone model (PFCZM) combined with the cell-based smoothed finite element method (CSFEM) is presented to investigate the quasi-brittle fracture behaviour of concrete at mesoscale. An automatic quadtree decomposition technique is employed to discretise the CT image-based meso-structures including aggregates, mortar and pores, with local mesh adaptively refined at material boundaries. The resultant quadtree elements with hanging nodes are naturally treated as CSFEM polygons. In the proposed CSFEM-PFCZM, the stiffness matrices and residual vectors for displacement and damage fields are formulated by the Wachspress shape function and smoothed strain matrices. The crack driving forces are evaluated as history variables at the integration points of CSFEM subcells. Four nonlinear fracture benchmarks are presented to validate the proposed method regarding the variability of mesoscale fracture processes, crack topology and load-displacement curves. It is found that the CSFEM-PFCZM combined with the quadtree decomposition significantly improves the computational efficiency over the traditional FEM counterparts, and shows great potential for multiscale fracture evaluation of quasi-brittle composite materials. This is due to the fast mesh generation and flexible simulation of complicated nonlinear fracture using the CSFEM-PFCZM without the need for remeshing or mesh enrichments.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Van Mier, J. G.M., Concrete Fracture: A Multiscale Approach (2012), CRC Press: CRC Press Boca Raton, FL
[2] Man, H. K.; Van Mier, J. G.M., Damage distribution and size effect in numerical concrete from lattice analyses, Cem. Concr. Compos., 33, 9, 867-880 (2011)
[3] Du, X. L.; Jin, L., Size Effect in Concrete Materials and Structures (2021), Science Press: Science Press Beijing, China · Zbl 07657940
[4] Landis, E. N., Microplanes and microstructure: Connecting abstractions and reality, Eng. Fract. Mech., 200, 42-49 (2018)
[5] Huang, Y. J.; Yang, Z. J.; Ren, W. Y.; Liu, G. H.; Zhang, C. Z., 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model, Int. J. Solids Struct., 67, 340-352 (2015)
[6] Wriggers, P.; Moftah, S. O., Mesoscale models for concrete: Homogenisation and damage behaviour, Finite Elem. Anal. Des., 42, 7, 623-636 (2006)
[7] Pulatsu, B.; Erdogmus, E.; Lourenço, P. B.; Quey, R., Simulation of uniaxial tensile behavior of quasi-brittle materials using softening contact models in DEM, Int. J. Fract., 217, 1, 105-125 (2019)
[8] Huang, Y. J.; Yang, Z. J.; Chen, X. W.; Liu, G. H., Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images, Int. J. Impact Eng., 97, 102-115 (2016)
[9] Jin, L.; Yu, W. X.; Du, X. L.; Zhang, S.; Li, D., Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates, Int. J. Impact Eng., 125, 1-12 (2019)
[10] Kim, S. M.; Al-Rub, R. K.A., Meso-scale computational modeling of the plastic-damage response of cementitious composites, Cem. Concr. Res., 41, 3, 339-358 (2011)
[11] Wu, J. Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[12] Wu, J. Y.; Qiu, J. F.; Nguyen, V. P.; Mandal, T. K.; Zhuang, L. J., Computational modeling of localized failure in solids: XFEM vs PF-CZM, Comput. Methods Appl. Mech. Engrg., 345, 618-643 (2019) · Zbl 1440.74349
[13] Zhang, Z. H.; Guo, J.; Zhang, Z. W.; Song, X. G., Mesoscale damage modelling of concrete by using image-based scaled boundary finite element method, Int. J. Damage Mech., Article 1056789521998414 pp. (2021)
[14] López, C. M.; Carol, I.; Aguado, A., Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior, Mater. Struct., 41, 3, 583-599 (2008)
[15] Ren, W. Y.; Yang, Z. J.; Sharma, R.; Zhang, C. Z.; Withers, P. J., Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete, Eng. Fract. Mech., 133, 24-39 (2015)
[16] Huang, Y. J.; Yang, Z. J.; Liu, G. H.; Chen, X. W., An efficient FE-SBFE coupled method for mesoscale cohesive fracture modelling of concrete, Comput. Mech., 58, 4, 635-655 (2016)
[17] Naderi, S.; Zhang, M., Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates, Cem. Concr. Compos., 116, Article 103889 pp. (2021)
[18] Guo, H.; Ooi, E. T.; Saputra, A. A.; Yang, Z. J.; Natarajan, S.; Ooi, E. H.; Song, C. M., A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete, Eng. Fract. Mech., 211, 420-441 (2019)
[19] Du, X. L.; Jin, L.; Ma, G., Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method, Int. J. Damage Mech., 23, 7, 872-898 (2014)
[20] Patil, R. U.; Mishra, B. K.; Singh, I. V., A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials, Theor. Appl. Fract. Mech., 100, 390-415 (2019)
[21] Oliver, J.; Caicedo, M.; Roubin, E.; Huespe, A. E.; Hernandez, J., Continuum approach to computational multiscale modeling of propagating fracture, Comput. Methods Appl. Mech. Engrg., 294, 384-427 (2015) · Zbl 1423.74062
[22] Landau, L.; Lifshitz, E., Statistical Physics (1980), Pergamon Press: Pergamon Press Oxford · JFM 64.0887.01
[23] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[24] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[25] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[26] Feng, D. C.; Wu, J. Y., Phase-field regularized cohesive zone model (CZM) and size effect of concrete, Eng. Fract. Mech., 197, 66-79 (2018)
[27] Nguyen, V. P.; Wu, J. Y., Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model, Comput. Methods Appl. Mech. Engrg., 340, 1000-1022 (2018) · Zbl 1440.74362
[28] Wu, J. Y., A geometrically regularized gradient-damage model with energetic equivalence, Comput. Methods Appl. Mech. Engrg., 328, 612-637 (2018) · Zbl 1439.74032
[29] Wu, J. Y.; Nguyen, V. P., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20-42 (2018)
[30] Zhang, P.; Hu, X.; Yang, S.; Yao, W., Modelling progressive failure in multi-phase materials using a phase field method, Eng. Fract. Mech., 209, 105-124 (2019)
[31] Yang, Z. J.; Li, B. B.; Wu, J. Y., X-Ray computed tomography images based phase-field modeling of mesoscopic failure in concrete, Eng. Fract. Mech., 208, 151-170 (2019)
[32] Huang, Y. J.; Zhang, H.; Li, B. B.; Yang, Z. J.; Wu, J. Y.; Withers, P. J., Generation of high-fidelity random fields from micro CT images and phase field-based mesoscale fracture modelling of concrete, Eng. Fract. Mech., 249, Article 107762 pp. (2021)
[33] Xia, Y.; Wu, W.; Yang, Y.; Fu, X., Mesoscopic study of concrete with random aggregate model using phase field method, Constr. Build. Mater., 310, Article 125199 pp. (2021)
[34] Asahina, D.; Landis, E. N.; Bolander, J. E., Modeling of phase interfaces during pre-critical crack growth in concrete, Cem. Concr. Compos., 33, 9, 966-977 (2011)
[35] Suchorzewski, J.; Tejchman, J.; Nitka, M., Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure, Int. J. Damage Mech., 27, 4, 578-607 (2018)
[36] Lian, W. D.; Legrain, G.; Cartraud, P., Image-based computational homogenization and localization: Comparison between X-FEM/levelset and voxel-based approaches, Comput. Mech., 51, 3, 279-293 (2013)
[37] Tejchman, J., Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning, Mater. Charact., 154, 40-52 (2019)
[38] Yang, Z. J.; Ren, W. Y.; Sharma, R.; McDonald, S.; Mostafavi, M.; Vertyagina, Y.; Marrow, T. J., In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete, Cem. Concr. Compos., 75, 74-83 (2017)
[39] Du, Q.; Wang, D., Recent progress in robust and quality Delaunay mesh generation, J. Comput. Appl. Math., 195, 1-2, 8-23 (2006) · Zbl 1096.65016
[40] Keyak, J. H.; Meagher, J. M.; Skinner, H. B.; Mote, C. D., Automated three-dimensional finite element modelling of bone: A new method, J. Biomed. Eng., 12, 5, 389-397 (1990)
[41] Moumnassi, M.; Belouettar, S.; Béchet, É.; Bordas, S. P.A.; Quoirin, D.; Potier-Ferry, M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Engrg., 200, 5-8, 774-796 (2011) · Zbl 1225.65111
[42] Sukumar, N.; Chopp, D. L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, 46-47, 6183-6200 (2001) · Zbl 1029.74049
[43] Natarajan, S.; Mahapatra, D. R.; Bordas, S. P.A., Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework, Internat. J. Numer. Methods Engrg., 83, 3, 269-294 (2010) · Zbl 1193.74153
[44] Legrain, G.; Allais, R.; Cartraud, P., On the use of the extended finite element method with quadtree/octree meshes, Internat. J. Numer. Methods Engrg., 86, 6, 717-743 (2011) · Zbl 1235.74296
[45] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61, 12, 2045-2066 (2004) · Zbl 1073.65563
[46] Natarajan, S.; Bordas, S. P.A.; Roy Mahapatra, D., Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, Internat. J. Numer. Methods Engrg., 80, 1, 103-134 (2009) · Zbl 1176.74190
[47] Saputra, A.; Talebi, H.; Tran, D.; Birk, C.; Song, C. M., Automatic image-based stress analysis by the scaled boundary finite element method, Internat. J. Numer. Methods Engrg., 109, 5, 697-738 (2017) · Zbl 07874320
[48] Li, S.; Cui, X., N-sided polygonal smoothed finite element method (nSFEM) with non-matching meshes and their applications for brittle fracture problems, Comput. Methods Appl. Mech. Engrg., 359, Article 112672 pp. (2020) · Zbl 1441.74259
[49] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 6, 859-877 (2007) · Zbl 1169.74047
[50] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 2, 435-466 (2001) · Zbl 1011.74081
[51] Liu, M.; Gao, G.; Zhu, H.; Jiang, C.; Liu, G. R., A cell-based smoothed finite element method (CS-FEM) for three-dimensional incompressible laminar flows using mixed wedge-hexahedral element, Eng. Anal. Bound. Elem., 133, 269-285 (2021) · Zbl 1521.76347
[52] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J. Sound Vib., 320, 4-5, 1100-1130 (2009)
[53] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 3005-3027 (2010) · Zbl 1231.74432
[54] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh, Comput. Mech., 45, 1, 23-44 (2009) · Zbl 1398.74382
[55] Natarajan, S.; Ooi, E. T.; Chiong, I.; Song, C. M., Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation, Finite Elem. Anal. Des., 85, 101-122 (2014)
[56] Francis, A.; Ortiz-Bernardin, A.; Bordas, S. P.A.; Natarajan, S., Linear smoothed polygonal and polyhedral finite elements, Internat. J. Numer. Methods Engrg., 109, 9, 1263-1288 (2017) · Zbl 07874311
[57] Natarajan, S.; Ooi, E. T.; Saputra, A.; Song, C. M., A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Eng. Anal. Bound. Elem., 80, 218-229 (2017) · Zbl 1403.65217
[58] Natarajan, S.; Bordas, S. P.A.; Ooi, E. T., Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods, Internat. J. Numer. Methods Engrg., 104, 13, 1173-1199 (2015) · Zbl 1352.65531
[59] Kumbhar, P. Y.; Francis, A.; Annabattula, R. K.; Natarajan, S., An Abaqus UEL implementation of the smoothed finite element method, Int. J. Comput. Methods, 17, 02, Article 1850128 pp. (2017) · Zbl 07124752
[60] Surendran, M.; Lee, C.; Nguyen-Xuan, H.; Liu, G. R.; Natarajan, S., Cell-based smoothed finite element method for modelling interfacial cracks with non-matching grids, Eng. Fract. Mech., 242, Article 107476 pp. (2021)
[61] Bhowmick, S.; Liu, G. R., A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method, Eng. Fract. Mech., 204, 369-387 (2018)
[62] Braides, A., Approximation of Free-Discontinuity Problems (1998), Springer Science & Business Media · Zbl 0909.49001
[63] Wu, J. Y.; Cervera, M., A novel positive/negative projection in energy norm for the damage modeling of quasi-brittle solids, Int. J. Solids Struct., 139, 250-269 (2018)
[64] Wu, J. Y.; Huang, Y., Comprehensive implementations of phase-field damage models in Abaqus, Theor. Appl. Fract. Mech., 106, Article 102440 pp. (2020)
[65] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[66] Farrell, P.; Maurini, C., Linear and nonlinear solvers for variational phase-field models of brittle fracture, Internat. J. Numer. Methods Engrg., 109, 5, 648-667 (2017) · Zbl 07874318
[67] Cornelissen, H.; Hordijk, D.; Reinhardt, H., Experimental determination of crack softening characteristics of normalweight and lightweight, Heron, 31, 2, 45-46 (1986)
[68] Warren, J.; Schaefer, S.; Hirani, A.; Desbrun, M., Barycentric coordinates for convex sets, Adv. Comput. Math., 27, 3, 319-338 (2007) · Zbl 1124.52010
[69] Ds Simulia, Abaqus 6.14 Theory and User’S Manual (2014), DS SIMULIA Corp.: DS SIMULIA Corp. Providence RI, USA
[70] Hordijk, D. A., Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses, Heron, 37, 1 (1992)
[71] Withers, P. J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C. K.; Maire, E.; Manley, M.; du Plessis, A.; Stock, S. R., X-Ray computed tomography, Nat. Rev. Methods Prim., 1, 1, 1-21 (2021)
[72] Xiao, J. Z.; Li, W. G.; Corr, D. J.; Shah, S. P., Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete, Cem. Concr. Res., 52, 82-99 (2013)
[73] Rodrigues, E. A.; Manzoli, O. L.; Bitencourt, L. A.G.; Bittencourt, T. N.; Sánchez, M., An adaptive concurrent multiscale model for concrete based on coupling finite elements, Comput. Methods Appl. Mech. Engrg., 328, 26-46 (2018) · Zbl 1439.74462
[74] Rodrigues, E. A.; Manzoli, O. L.; Bitencourt, L. A.G., 3D concurrent multiscale model for crack propagation in concrete, Comput. Methods Appl. Mech. Engrg., 361, Article 112813 pp. (2020) · Zbl 1442.74214
[75] Winkler, B.; Hofstetter, G.; Niederwanger, G., Experimental verification of a constitutive model for concrete cracking, Proc. Inst. Mech. Eng. L, 215, 2, 75-86 (2001)
[76] Unger, J. F.; Eckardt, S.; Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method, Comput. Methods Appl. Mech. Engrg., 196, 41-44, 4087-4100 (2007) · Zbl 1173.74387
[77] Du, X. L.; Jin, L.; Ma, G., Numerical simulation of dynamic tensile-failure of concrete at meso-scale, Int. J. Impact Eng., 66, 5-17 (2014)
[78] Gálvez, J. C.; Elices, M.; Guinea, G. V.; Planas, J., Mixed mode fracture of concrete under proportional and nonproportional loading, Int. J. Fract., 94, 3, 267-284 (1998)
[79] Yang, D.; He, X.; Liu, X.; Deng, Y.; Huang, X., A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation, Int. J. Mech. Sci., Article 105830 pp. (2020)
[80] Natarajan, S.; Wang, J. C.; Song, C. M.; Birk, C., Isogeometric analysis enhanced by the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 283, 733-762 (2015) · Zbl 1425.65174
[81] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.