×

Effects of mode II loading on the interaction of a solute atmosphere with a crack in the presence of image stresses: a statistical mechanics study. (English) Zbl 1507.74380

Summary: Thermodynamics-based continuum models have been previously employed for examining how a solute atmosphere interacts with the stress field of various material defects in solids. However, recent studies suggest that the chemical potential used in prevalent continuum frameworks needs to be revised in the sense that the stress contribution to the chemical potential should arise only through the image stress field of the solutes, and the homogenized self-stress field of the solutes must hence be excluded from the chemical potential in a correct treatment. Here, adopting a statistical mechanics-based approach fully accounting for the image stress effects, we aim to present an investigation of the effect of a mode II loading on the interaction of a solute atmosphere with the stress field of a crack. Solute atmosphere is treated as a distribution of solute rods which extend indefinitely in the direction parallel to the crack front. Image stress effects both on the enthalpy of the solutes and on the stress intensity factors (SIFs) are taken into consideration. Monte Carlo simulations are utilized to find the equilibrium distribution of the solutes in the solid, and also to compute the ensemble average of the energy release rate (ERR) available for crack growth in the presence of an external loading. Effects of the system temperature, average solute concentration, and the loading intensity on the results are also examined. Simulation results suggest that the solute redistribution driven by mode II loading generates an additional mode II ERR for the crack growth. The results further indicate that the increase in the mode I ERR as caused by the solute redistribution induced by a mode I loading is weakened in the presence of a mode II loading. Since simulations are performed for a finite solid, the effects of solid dimensions and crack size on the results are also examined, and it is shown that the results remain insensitive to the geometric dimensions as long as the loading-induced SIFs at the crack tip and the solute concentration are kept unchanged. Effect of solute atmosphere on the maximum ERR for kinked crack growth is also examined.

MSC:

74R10 Brittle fracture
74E40 Chemical structure in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Anderson, T. L., Fracture Mechanics: Fundamentals and Applications (2005), CRC press: CRC press Boca Raton · Zbl 1083.74001
[2] Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A., In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals, Nat. Mater., 13, 1143-1148 (2014)
[3] Barber, J. R., Elasticity (1992), Springer · Zbl 0787.73001
[4] Barnett, D. M.; Oliver, W. C.; Nix, W. D., The binding force between an edge dislocation and a Fermi-Dirac solute atmosphere, Acta Metall., 30, 673-678 (1982)
[5] Barnett, D. M.; Wong, G.; Nix, W. D., The binding force between a Peierls-Nabarro edge dislocation and a Fermi-Dirac solute atmosphere, Acta Metall., 30, 2035-2041 (1982)
[6] Bullough, R.; Willis, J. R., The stress-induced point defect-dislocation interaction and its relevance to irradiation creep, Philos. Mag. A, 31, 855-861 (1975)
[7] Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D., Modeling a distribution of point defects as misfitting inclusions in stressed solids, J. Mech. Phys. Solid., 66, 154-171 (2014) · Zbl 1323.82051
[8] Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D., Modeling a distribution of point defects as misfitting inclusions in stressed solids, J. Mech. Phys. Solid., 66, 154-171 (2014) · Zbl 1323.82051
[9] Chateau, J. P.; Delafosse, D.; Magnin, T., Numerical simulations of hydrogen-dislocation interactions in fcc stainless steels, Acta Mater., 50, 1523-1538 (2002)
[10] Cogswell, D. A.; Bazant, M. Z., Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles, ACS Nano, 6, 2215-2225 (2012)
[11] Cottrell, A. H.; Bilby, B. A., Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc., 62, 49-62 (1949)
[12] Delafosse, D., Hydrogen effects on the plasticity of face centred cubic (fcc) crystals, (Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments (2012)), 247-285
[13] Dunn, A.; Capolungo, L., Simulating radiation damage accumulation in α-Fe: a spatially resolved stochastic cluster dynamics approach, Comput. Mater. Sci., 102, 314-326 (2015)
[14] Dunn, A. Y.; Capolungo, L.; Martinez, E.; Cherkaoui, M., Spatially resolved stochastic cluster dynamics for radiation damage evolution in nanostructured metals, J. Nucl. Mater., 443, 128-139 (2013)
[15] Eshelby, J. D., Elastic inclusions and inhomogeneities, Prog. Solid Mech., 2, 89-140 (1961)
[16] Eshelby, J. D., Distortion of a crystal by point imperfections, J. Appl. Phys., 25, 255-261 (1954) · Zbl 0055.44208
[17] Eshelby, J. D., The force on an elastic singularity, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., 244, 87-112 (1951) · Zbl 0043.44102
[18] Esmizadeh, S.; Haftbaradaran, H., On the interaction of a solute atmosphere with a circular void in two-dimensional elasticity: a statistical mechanics approach, J. Mech. Phys. Solid., 145, 104131 (2020)
[19] Fett, T., Stress Intensity Factors, T-Stresses, Weight Functions: Supplement Volume (2009), Universitätsverlag Karlsruhe: Universitätsverlag Karlsruhe Karlsruhe
[20] Gorsse, S.; Miracle, D. B.; Senkov, O. N., Mapping the world of complex concentrated alloys, Acta Mater., 135, 177-187 (2017)
[21] Gross, D.; Wagner, C., The interaction of a straight crack with a center of dilatation, Arch. Appl. Mech., 62, 134-145 (1992) · Zbl 0742.73016
[22] Gu, Y.; El-Awady, J. A., Theoretical framework for predicting solute concentrations and solute-induced stresses in finite volumes with arbitrary elastic fields, Mater. Theory, 4, 1 (2020)
[23] Haftbaradaran, H.; Qu, J., Two-dimensional chemo-elasticity under chemical equilibrium, Int. J. Solid Struct., 56, 126-135 (2015)
[24] Haftbaradaran, H.; Song, J.; Curtin, W. A.; Gao, H., Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration, J. Power Sources, 196, 361-370 (2011)
[25] Hazzledine, P.; Sun, Y., The interaction and concentration of vacancies in NiAl, Intermetallics, 12, 899-902 (2004)
[26] Heald, P.; Speight, M., Point defect behaviour in irradiated materials, Acta Metall., 23, 1389-1399 (1975)
[27] Hirth, J. P., Effects of hydrogen on the properties of iron and steel, Metall. Trans. A, 11, 861-890 (1980)
[28] Hirth, J. P.; Barnett, D. M.; Hoagland, R. G., Solute atmospheres at dislocations, Acta Mater., 131, 574-593 (2017)
[29] Hu, L.; Hammond, K. D.; Wirth, B. D.; Maroudas, D., Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten, J. Appl. Phys., 115, 173512 (2014)
[30] Johnson, W. C.; Voorhees, P. W., Equilibrium solute concentration surrounding elastically interacting precipitates, Metall. Trans. A, 16, 337-347 (1985)
[31] Kardar, M., Statistical Physics of Particles (2007), Cambridge University Press · Zbl 1148.82001
[32] King, K. C.; Voorhees, P. W.; Olson, G. B.; Mura, T., Solute distribution around a coherent precipitate in a multicomponent alloy, Metall. Trans. A, 22, 2199-2210 (1991)
[33] Kohnert, A. A.; Wirth, B. D.; Capolungo, L., Modeling microstructural evolution in irradiated materials with cluster dynamics methods: a review, Comput. Mater. Sci., 149, 442-459 (2018)
[34] Larché, F. C.; Cahn, J. W., The interactions of composition and stress in crystalline solids, Acta Metall., 33, 331-357 (1985)
[35] Larché, F. C.; Cahn, J. W., The effect of self-stress on diffusion in solids, Acta Metall., 30, 1835-1845 (1982)
[36] Larché, F. C.; Cahn, J. W., A linear theory of thermochemical equilibrium of solids under stress, Acta Metall., 21, 1051-1063 (1973)
[37] Leyson, G. P.M.; Grabowski, B.; Neugebauer, J., Multiscale description of dislocation induced nano-hydrides, Acta Mater., 89, 50-59 (2015)
[38] Li, J. C.M.; Oriani, R. A.; Darken, L. S., The thermodynamics of stressed solids, Zeitschrift fur Phys. Chemie, 49, 271-290 (1966)
[39] Liu, H. W., Stress-corrosion cracking and the interaction between crack-tip stress field and solute atoms, J. Basic Eng., 92, 633-638 (1970)
[40] Lufrano, J.; Sofronis, P., Numerical analysis of the interaction of solute hydrogen atoms with the stress field of a crack, Int. J. Solid Struct., 33, 1709-1723 (1996) · Zbl 0919.73226
[41] Lufrano, J.; Sofronis, P.; Birnbaum, H. K., Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip, J. Mech. Phys. Solid., 44, 179-205 (1996)
[42] Ma, Q.; Clarke, D. R., Optical fluorescence from chromium ions in sapphire: a probe of the image stress, Acta Metall. Mater., 41, 1811-1816 (1993)
[43] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092 (1953) · Zbl 1431.65006
[44] Miracle, D. B.; Senkov, O. N., A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448-511 (2017)
[45] Mishin, Y.; Cahn, J. W., Thermodynamics of Cottrell atmospheres tested by atomistic simulations, Acta Mater., 117, 197-206 (2016)
[46] Mughal, M. Z.; Moscatelli, R.; Amanieu, H.-Y.; Sebastiani, M., Effect of lithiation on micro-scale fracture toughness of LixMn2O4 cathode, Scripta Mater., 116, 62-66 (2016)
[47] Narita, N.; Shiga, T.; Higashida, K., Crack-impurity interactions and their role in the embrittlement of Fe alloy crystals charged with light elements, Mater. Sci. Eng., A, 176, 203-209 (1994)
[48] Raabe, D.; Herbig, M.; Sandlöbes, S.; Li, Y.; Tytko, D.; Kuzmina, M.; Ponge, D.; Choi, P.-P., Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces, Curr. Opin. Solid State Mater. Sci., 18, 253-261 (2014)
[49] Raabe, D.; Sandlöbes, S.; Millán, J.; Ponge, D.; Assadi, H.; Herbig, M.; Choi, P.-P., Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite, Acta Mater., 61, 6132-6152 (2013)
[50] Robertson, I. M.; Sofronis, P.; Nagao, A.; Martin, M. L.; Wang, S.; Gross, D. W.; Nygren, K. E., Hydrogen embrittlement understood, Metall. Mater. Trans. B, 46, 1085-1103 (2015)
[51] Rouchette, H.; Thuinet, L.; Legris, A.; Ambard, A.; Domain, C., Quantitative phase field model for dislocation sink strength calculations, Comput. Mater. Sci., 88, 50-60 (2014)
[52] Sauer, T., Numerical Analysis (2012), Pearson
[53] Sheldon, B. W.; Shenoy, V. B., Space charge induced surface stresses: implications in ceria and other ionic solids, Phys. Rev. Lett., 106 (2011)
[54] Shi, S.; Markmann, J.; Weissmüller, J., Verifying Larché-Cahn elasticity, a milestone of 20th-century thermodynamics, Proc. Natl. Acad. Sci. Unit. States Am., 115, 10914-10919 (2018)
[55] Shin, Y.; Manthiram, A., Microstrain and capacity fade in spinel manganese oxides, Electrochem. Solid State Lett., 5, A55-A58 (2002)
[56] Sills, R. B.; Cai, W., Free energy change of a dislocation due to a Cottrell atmosphere, Philos. Mag. A, 98, 1491-1510 (2018)
[57] Sofronis, P., The influence of mobility of dissolved hydrogen on the elastic response of a metal, J. Mech. Phys. Solid., 43, 1385-1407 (1995)
[58] Song, Q.; Zhu, Y.; Huang, M.; Li, Z., Shielding or anti-shielding effects of solute hydrogen near a finite length crack: a new possible mechanism of hydrogen embrittlement, Mech. Mater., 132, 109-120 (2019)
[59] Stoller, R. E.; Golubov, S. I.; Domain, C.; Becquart, C. S., Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models, J. Nucl. Mater., 382, 77-90 (2008)
[60] Swaminathan, N.; Qu, J.; Sun, Y., An electrochemomechanical theory of defects in ionic solids. Part I. Theory, Philos. Mag. A (2007)
[61] Tada, H.; Paris, P. C.; Irwin, G. R., The Stress Analysis of Cracks Handbook (2000), ASME Press: ASME Press New York
[62] Troiano, A. R., The role of hydrogen and other interstitials in the mechanical behavior of metals, Trans. ASM, 52, 54-80 (1960)
[63] Tsuchiya, M.; Lai, B. K.; Ramanathan, S., Scalable nanostructured membranes for solid-oxide fuel cells, Nat. Nanotechnol., 6, 282-286 (2011)
[64] Weertman, J.; Hack, J. E., Crack tip shielding/antishielding by impurity atoms, Int. J. Fract., 36, 27-34 (1988)
[65] Weertman, J.; Hack, J. E., Stress intensity factors for crack tip shielding or anti-shielding by impurity atoms, Int. J. Fract., 30, 295-299 (1986)
[66] Woodford, W. H.; Chiang, Y.-M.; Carter, W. C., Electrochemical shock in ion-intercalation materials with limited solid-solubility, J. Electrochem. Soc., 160, A1286-A1292 (2013)
[67] Yu, Q.; Qi, L.; Tsuru, T.; Traylor, R.; Rugg, D.; Morris, J. W.; Asta, M.; Chrzan, D. C.; Minor, A. M., Origin of dramatic oxygen solute strengthening effect in titanium, Science, 347, 80, 635-639 (2015)
[68] Zarnas, P. D.; Boyce, B. L.; Qu, J.; Dingreville, R., Stress-induced transition from vacancy annihilation to void nucleation near microcracks, Int. J. Solid Struct., 213, 103-110 (2021)
[69] Zarnas, P. D.; Dingreville, R.; Qu, J., Mechanics of point defect diffusion near dislocations and grain boundaries: a chemomechanical framework, Comput. Mater. Sci., 144, 99-112 (2018)
[70] Zhang, X.; Shyy, W.; Sastry, A. M., Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, J. Electrochem. Soc., 154, A910-A916 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.