×

EMCS-SVR: hybrid efficient and accurate enhanced simulation approach coupled with adaptive SVR for structural reliability analysis. (English) Zbl 1507.74273

Summary: In structural reliability analysis, robust and efficient sampling methods that address low failure probabilities are vital challenges. In this paper, a novel dynamical adaptive enhanced simulation method coupled with support vector regression (SVR) is proposed. Firstly, a more general and efficient approximation formula is proposed as an improved scheme. Furthermore, a dynamical adaptive simulation strategy for Monte Carlo simulation and an active training methodology basis SVR are developed. The dynamical active region for improving the efficiency and robustness of structural reliability analysis is applied for training the SVR models which are utilized for accurate estimating the failure probability by simulation methods. Analytical methods and crude Monte Carlo simulation are used for comparison, validation and discussion with the proposed hybrid simulation method using four numerical examples and four engineering problems. Through coupling SVR with dynamical active region, an accurate failure probability prediction with robust and low-computational cost is achieved. The proposed adaptive strategy applied in hybrid enhanced simulation approaches provided the accurate results with low-computational burden and these hybrid methods are robust than the analytical approaches. The proposed methods have shown strong capability for application in engineering problems with complex nonlinear performance functions.

MSC:

74P10 Optimization of other properties in solid mechanics
90B25 Reliability, availability, maintenance, inspection in operations research
62N05 Reliability and life testing
Full Text: DOI

References:

[1] H. Wu, Z. Hu, X. Du, Time-dependent system reliability analysis with second-order reliability method, 143 (2021) 1-10. http://dx.doi.org/10.1115/1.4048732.
[2] I. Journal, S. Stability, D. Vol, W. Scientific, P. Company, S. Zhu, T. Xiang, T. Spem, Dynamic reliability evaluation by first-order reliability method integrated with stochastic pseudo excitation method, 21 (2021) 1-18. http://dx.doi.org/10.1142/S0219455421500243. · Zbl 1535.70101
[3] B. Mcwilliams, Probabilistic feasibility design of a laser powder bed fusion process using integrated first- order reliability and Monte Carlo methods, 143 (2021) 1-8. http://dx.doi.org/10.1115/1.4050544.
[4] Papaioannou, I.; Straub, D., Combination line sampling for structural reliability analysis, Struct. Saf., 88, Article 102025 pp. (2021)
[5] Zuniga, M. M.; Murangira, A.; Perdrizet, T., Structural reliability assessment through surrogate based importance sampling with dimension reduction, Reliab. Eng. Syst. Saf., 207, Article 107289 pp. (2021)
[6] Jafari-asl, J.; Ohadi, S.; El, M.; Ben, A.; Trung, N., Accurate structural reliability analysis using an improved line-sampling- accurate structural reliability analysis using an improved line-sampling-method-based slime mold algorithm (2021)
[7] Du, X., Unified uncertainty analysis by the first order reliability method, J. Mech. Des. Trans. ASME, 130, 0914011-09140110 (2008)
[8] Hu, Z.; Mansour, R.; Olsson, M.; Du, X., Second-order reliability methods: a review and comparative study, Struct. Multidiscip. Optim., 64, 3233-3263 (2021)
[9] Rosenblatt, M., Remarks on a multivariate transformation, Ann. Math. Statist., 23, 470-472 (1952), Author ( s ): Murray Rosenblatt Published by : Institute of Mathematical Statistics Stable URL : http://www.jstor.org/stable/2236692 REFERENCES Linked references are available on JSTOR for this article · Zbl 0047.13104
[10] Zhao, Y. G.; Ono, T., A general procedure for first/second-order reliability method (FORM/SORM), Struct. Saf., 21, 95-112 (1999)
[11] Cheng, K.; Lu, Z.; Xiao, S.; Lei, J., Estimation of small failure probability using generalized subset simulation, Mech. Syst. Signal Process., 163, Article 108114 pp. (2022)
[12] Lim, H. U.; Manuel, L., Distribution-free polynomial chaos expansion surrogate models for efficient structural reliability analysis, Reliab. Eng. Syst. Saf., 205, Article 107256 pp. (2021)
[13] Lieu, Q. X.; Nguyen, K. T.; Dang, K. D.; Lee, S.; Kang, J.; Lee, J., An adaptive surrogate model to structural reliability analysis using deep neural network, Expert Syst. Appl., 189, Article 116104 pp. (2022)
[14] Xu, J.; Wu, Z.; Lu, Z. H., An adaptive polynomial skewed-normal transformation model for distribution reconstruction and reliability evaluation with rare events, Mech. Syst. Signal Process., 169, Article 108589 pp. (2021)
[15] Gong, J. X.; Yi, P., A robust iterative algorithm for structural reliability analysis, Struct. Multidiscip. Optim., 43, 519-527 (2011) · Zbl 1274.74469
[16] Keshtegar, B.; Baharom, S.; El-Shafie, A., Self-adaptive conjugate method for a robust and efficient performance measure approach for reliability-based design optimization, Eng. Comput., 34, 187-202 (2018)
[17] Miri, M.; Keshtegar, B., An enhanced HL-RF method for the computation of structural failure probability based on relaxed approach, Civ. Eng. Infrastruct. J., 46, 69-80 (2013)
[18] Abubakar, A. B.; Kumam, P.; Ibrahim, A. H.; Chaipunya, P.; Rano, S. A., New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications, Math. Comput. Simulation (2021)
[19] Ren, C.; Aoues, Y.; Lemosse, D.; Souza De Cursi, E., Ensemble of surrogates combining kriging and artificial neural networks for reliability analysis with local goodness measurement, Struct. Saf., 96, Article 102186 pp. (2022)
[20] Luo, C.; Keshtegar, B.; Zhu, S. P.; Taylan, O.; Niu, X. P., Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis, Comput. Methods Appl. Mech. Engrg., 388, Article 114218 pp. (2022) · Zbl 1507.65013
[21] Trost, J. E., Statistically nonrepresentative stratified sampling: A sampling technique for qualitative studies, Qual. Sociol., 9, 54-57 (1986)
[22] Rashki, M.; Miri, M.; Azhdary Moghaddam, M., A new efficient simulation method to approximate the probability of failure and most probable point, Struct. Saf., 39, 22-29 (2012)
[23] Tokdar, S. T.; Kass, R. E., Importance sampling: A review, Wiley Interdiscip. Rev. Comput. Statist., 2, 54-60 (2010)
[24] Neal, R. M., Annealed importance sampling, Stat. Comput., 11, 125-139 (2001)
[25] Elvira, V.; Martino, L., Advances in importance sampling, Wiley Statist. Ref. Stat. Ref. Online, 1, 1-14 (2021)
[26] Au, S. K.; Beck, J. L., Important sampling in high dimensions, Struct. Saf., 25, 139-163 (2003)
[27] Remacle, J.; Lambrechts, J.; Seny, B., Blossom-quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm, International, 1102-1119 (2012) · Zbl 1242.74155
[28] B.M. Hohenbichler, R. Rackwitz, ( i ), 114 (1989) 2195-2199.
[29] Deák, I., Three digit accurate multiple normal probabilities, Numer. Math., 35, 369-380 (1980) · Zbl 0453.65007
[30] Nie, J.; Ellingwood, B. R., Directional methods for structural reliability analysis, Struct. Saf., 22, 233-249 (2000)
[31] Naess, A.; Leira, B. J.; Batsevych, O., System reliability analysis by enhanced Monte Carlo simulation, Struct. Saf., 31, 349-355 (2009)
[32] Leira, B. J.; Næss, A.; Brandrud Næss, O. E., Reliability analysis of corroding pipelines by enhanced Monte Carlo simulation, Int. J. Press. Vessel. Pip., 144, 11-17 (2016)
[33] A. Ranganathan, The Levenberg-Marquardt algorithm 3 LM as a blend of gradient descent and Gauss-Newton itera, Internet Httpexcelsior Cs Ucsb Educoursescs290ipdfL MA Pdf. 142 (2004) 1-5. http://twiki.cis.rit.edu/twiki/pub/Main/AdvancedDipTeamB/the-levenberg-marquardt-algorithm.pdf.
[34] Deng, J.; Gu, D.; Li, X.; Yue, Z. Q., Structural reliability analysis for implicit performance functions using artificial neural network, Struct. Saf., 27, 25-48 (2005)
[35] Cheng, J.; Li, Q. S.; cheng Xiao, R., A new artificial neural network-based response surface method for structural reliability analysis, Probab. Eng. Mech., 23, 51-63 (2008)
[36] Xiao, M.; Gao, L.; Xiong, H.; Luo, Z., An efficient method for reliability analysis under epistemic uncertainty based on evidence theory and support vector regression, J. Eng. Des., 26, 340-364 (2015)
[37] You, L. F.; Zhang, J. G.; Zhou, S.; Wu, J., A novel mixed uncertainty support vector machine method for structural reliability analysis, Acta Mech., 232, 1497-1513 (2021) · Zbl 1492.74142
[38] Bai, G.; Fei, C., Distributed collaborative response surface method for mechanical dynamic assembly reliability design, Chin. J. Mech. Eng. (Engl. Ed.), 26, 1160-1168 (2013)
[39] Xiao, N. C.; Zuo, M. J.; Zhou, C., A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis, Reliab. Eng. Syst. Saf., 169, 330-338 (2018)
[40] Keshtegar, B.; Kisi, O., M5 model tree and Monte Carlo simulation for efficient structural reliability analysis, Appl. Math. Model., 48, 899-910 (2017) · Zbl 1480.74286
[41] Lim, H. U.; Manuel, L., Distribution-free polynomial chaos expansion surrogate models for efficient structural reliability analysis, Reliab. Eng. Syst. Saf., 205, Article 107256 pp. (2021)
[42] Wilkie, D.; Galasso, C., Gaussian process regression for fatigue reliability analysis of offshore wind turbines, Struct. Saf., 88, Article 102020 pp. (2021)
[43] Zhu, B.; Hiraishi, T.; Pei, H.; Yang, Q., Efficient reliability analysis of slopes integrating the random field method and a Gaussian process regression-based surrogate model, Int. J. Numer. Anal. Methods Geomech., 45, 478-501 (2021)
[44] Sedighizadeh, D.; Masehian, E.; Sedighizadeh, M.; Akbaripour, H., GEPSO: A new generalized particle swarm optimization algorithm, Math. Comput. Simulation, 179, 194-212 (2021) · Zbl 1524.90349
[45] Cheng, K.; Lu, Z., Adaptive Bayesian support vector regression model for structural reliability analysis, Reliab. Eng. Syst. Saf., 206, Article 107286 pp. (2021)
[46] Ling, C.; Lu, Z.; Zhang, W., Bayesian support vector regression for reliability-based design optimization, AIAA J., 59, 5141-5157 (2021)
[47] Hossain, S. M.Z.; Sultana, N.; Mohammed, M. E.; Razzak, S. A.; Hossain, M. M., Hybrid support vector regression and crow search algorithm for modeling and multiobjective optimization of microalgae-based wastewater treatment, J. Environ. Manag., 301, Article 113783 pp. (2022)
[48] Dang, L.; He, X.; Tang, D.; Li, Y.; Wang, T., A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures, Int. J. Fatigue, 159, Article 106748 pp. (2022)
[49] Bahonar, M.; Safizadeh, M. S., Investigation of real delamination detection in composite structure using air-coupled ultrasonic testing, Compos. Struct., 280, Article 114939 pp. (2022)
[50] Zhu, S.; Ohsaki, M.; Guo, X., Prediction of non-linear buckling load of imperfect reticulated shell using modified consistent imperfection and machine learning, Eng. Struct., 226, Article 111374 pp. (2021)
[51] Liu, J.; Zhang, Y.; Zhang, Y.; Kitipornchai, S.; Yang, J., Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation, Mater. Des., 213, Article 110334 pp. (2022)
[52] Awad, M.; Khanna, R., Efficient learning machines: Theories, concepts, and applications for engineers and system designers (2015)
[53] Cortes, C.; Vapnik, V., Support-vector networks, Mach. Learn., 20 (1995) · Zbl 0831.68098
[54] Zhao, Y.-G.; Lu, Z.-H., Fourth-moment standardization for structural reliability assessment, J. Struct. Eng., 133, 916-924 (2007)
[55] Ghalehnovi, M.; Rashki, M.; Ameryan, A., First order control variates algorithm for reliability analysis of engineering structures, Appl. Math. Model., 77, 829-847 (2020) · Zbl 1443.74257
[56] Melchers, R. E.; Ahammed, M., A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability, Comput. Struct., 82, 55-61 (2004)
[57] Du, X., First order and second reliability methods, Probab. Eng. Des. Chap. Se, 1-33 (2005)
[58] Elegbede, C., Structural reliability assessment based on particles swarm optimization, Struct. Saf., 27, 171-186 (2005)
[59] Keshtegar, B.; Zhu, S. P., Three-term conjugate approach for structural reliability analysis, Appl. Math. Model., 76, 428-442 (2019) · Zbl 1481.90139
[60] Zhu, S. P.; Liu, Q.; Peng, W.; Zhang, X. C., Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks, Int. J. Mech. Sci., 142-143, 502-517 (2018)
[61] Niu, X. P.; Wang, R. Z.; Liao, D.; Zhu, S. P.; Zhang, X. C.; Keshtegar, B., Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks, Int. J. Fatigue, 142, Article 105912 pp. (2021)
[62] Fatemi, A.; Socie, D. F., A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. Mater. Struct., 11, 149-165 (1988)
[63] Zhu, S. P.; Foletti, S.; Beretta, S., Probabilistic framework for multiaxial LCF assessment under material variability, Int. J. Fatigue, 103, 371-385 (2017)
[64] Zhu, S. P.; Yu, Z. Y.; Liu, Q.; Ince, A., Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction, Int. J. Damage Mech., 28, 708-739 (2019)
[65] Keshtegar, B.; Ben Seghier, M. E.A.; Zio, E.; Correia, J. A.F. O.; Zhu, S. P.; Trung, N. T., Novel efficient method for structural reliability analysis using hybrid nonlinear conjugate map-based support vector regression, Comput. Methods Appl. Mech. Engrg., 381, Article 113818 pp. (2021) · Zbl 1506.65013
[66] Huang, P.; Huang, H. Z.; Huang, T., A novel algorithm for structural reliability analysis based on finite step length and Armijo line search, Appl. Sci., 9, 1-17 (2019)
[67] S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, in: Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom, 2014, pp. 2554-2563.
[68] Roy, A.; Chakraborty, S., Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures, Reliab. Eng. Syst. Saf., 200, Article 106948 pp. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.