×

Multi-fidelity meta modeling using composite neural network with online adaptive basis technique. (English) Zbl 1507.65026

Summary: A composite neural network (NN) is a way to improve the reliability of a prediction field by implementing a multi-fidelity model when high-fidelity data are extremely limited. The reliability of the composite NN depends highly on the quantity and quality of low-fidelity data. Satisfying both issues simultaneously is difficult in engineering practices even if low-fidelity data are considered. With this motivation, we suggest a strategy for ameliorating low-fidelity data to efficiently improve the prediction fields of a composite NN. In the proposed strategy, a reduced-order modeling (ROM) is used to supply a large number of low-fidelity data with relatively low computational costs. To decrease ROM errors that may decisively hinder the training of a cross-correlation between low-fidelity and high-fidelity data, the low-fidelity data are updated using an efficient adaptive basis technique. The adaptive basis in this work is calculated by optimizing the local error data to avoid huge computational costs. As a result, the low-fidelity data can better reflect the trend while satisfying the condition in which the low-fidelity data should be sufficiently provided through an efficient procedure. Furthermore, the strategy applied in this study is conducted without any modifications of the given high-fidelity data. Hence, even if high-fidelity data may no longer be obtained, it is possible to efficiently obtain the high-quality prediction field of the composite NN. A detailed strategy is proposed herein, and its performance is evaluated through various numerical examples.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
68T07 Artificial neural networks and deep learning
Full Text: DOI

References:

[1] Han, S.; Choi, H. S.; Choi, J.; Choi, J. H.; Kim, J. G., A DNN-based data-driven modeling employing coarse sample data for real-time flexible multibody dynamics simulations, Comput. Methods Appl. Mech. Engrg., 373 (2021) · Zbl 1506.65097
[2] Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh, V. M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Engrg., 362 (2020) · Zbl 1439.74466
[3] Jung, K.; Yun, G. J., A self-learning data-driven development of failure criteria of unknown anisotropic ductile materials with deep learning neural network, Comput. Mater. Contin., 66, 2, 1091-1120 (2021)
[4] Meng, X. H.; Karniadakis, G. E., A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems, J. Comput. Phys., 401 (2020) · Zbl 1454.76006
[5] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[6] Kennedy, M. C.; O’Hagan, A., Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1, 1-13 (2020) · Zbl 0974.62024
[7] Forrester, A. I.J.; Sobester, A.; Keane, A. J., Multi-fidelity optimization via surrogate modelling, Proc. R. Soc. A, 463, 2088, 3251-3269 (2007) · Zbl 1142.90489
[8] Zhou, K.; Tang, J., Efficient characterization of dynamic response variation using multi-fidelity data fusion through composite neural network, Eng. Struct., 232 (2021)
[9] M. Guoa, A. Manzonib, M. Amendtc, P. Contib, J.S. Hesthavenc, Multi-fidelity regression using artificial neural networks: efficient approximation of parameter-dependent output quantities. arXiv preprint. arXiv:2102.13403.
[10] Miller, B. A.; McNamara, J. J., Impact of aerothermodynamic model fidelity on aerothermoelastic response of a skin panel, AIAA J., 56, 12, 5028-5032 (2018)
[11] Mahmoudabadbozchelou, M.; Caggioni, M.; Shahsavari, S.; Hartt, W. H.; Karniadakis, G. E.; Jamali, S., Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework, J. Rheol., 65, 2, 179-198 (2021)
[12] Tsompanakis, Y.; Lagaros, N. D.; Papadrakakis, M., Structural Design Optimization Considering Uncertainties (2008), Taylor & Francis: Taylor & Francis Florida
[13] Kim, J. G.; Park, Y. J.; Lee, G. H.; Kim, D. N., A general model reduction with primal assembly in structural dynamics, Comput. Methods Appl. Mech. Engrg., 324, 1-28 (2017) · Zbl 1439.74435
[14] Ghavamian, F.; Tiso, P.; Simone, A., POD-DEIM model order reduction for strain-softening viscoplasticity, Comput. Methods Appl. Mech. Engrg., 317, 458-479 (2017) · Zbl 1439.74073
[15] Ahn, J. G.; Yang, H. I.; Kim, J. G., Multiphysics model reduction of thermomechanical vibration in a state-space formulation (2021), arXiv e-prints, arXiv-2105
[16] Kim, S. M.; Chae, S. W.; Kim, J. G., Multiphysics model reduction of symmetric vibro-acoustic formulation with a priori error estimation criteria, Internat. J. Numer. Methods Engrg., 121, 23, 5381-5404 (2020) · Zbl 07864080
[17] Kim, S. M.; Kim, J. G.; Chae, S. W.; Park, K. C., A strongly coupled model reduction of vibro-acoustic interaction, Comput. Methods Appl. Mech. Engrg., 347, 495-516 (2019) · Zbl 1440.74127
[18] Amsallem, D.; Farhat, C., Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J., 46, 7, 1803-1813 (2008)
[19] Ahmed, S. E.; San, O.; Rasheed, A.; Iliescu, T., A long short-term memory embedding for hybrid uplifted reduced order models, Physica D, 409 (2020) · Zbl 1505.76071
[20] Carlberg, K., Adaptive h-refinement for reduced order models, Internat. J. Numer. Methods Engrg., 102, 5, 1192-1210 (2015) · Zbl 1352.65136
[21] Efendiev, Y.; Gildin, E.; Yang, Y. F., Online adaptive local-global model reduction for flows in heterogeneous porous media, Computation, 4, 2 (2016)
[22] Nigro, P. S.B.; Anndif, M.; Teixeira, Y.; Pimenta, P. M.; Wriggers, P., An adaptive model order reduction with quasi-Newton method for nonlinear dynamical problems, Internat. J. Numer. Methods Engrg., 106, 9, 740-759 (2016) · Zbl 1352.65184
[23] M. Giselle Fernández-Godino, Chanyoung Park, Nam-Ho Kim, Raphael T. Haftka, Review of multi-fidelity models. arXiv preprint. arXiv:1609.07196.
[24] J.G. Ahn, H.I. Yang, J.G. Kim, Online adaptive basis construction for nonlinear model reduction through local error optimization. arXiv preprint. arXiv:2105.01285.
[25] Mordecal, A., Nonlinear Programming Analysis and Methods (2003), Courier Corporation: Courier Corporation Massachusetts · Zbl 1140.90002
[26] Golub, G. H.; Van Loan, C. F., Matrix Computations (2012), Johns Hopkins University Press: Johns Hopkins University Press Baltimore
[27] Beckermann, B.; Kressner, D.; Schweizer, M., Low-rank updates of matrix functions, SIAM J. Matrix Anal. Appl., 39, 1, 539-565 (2018) · Zbl 1390.15024
[28] Brand, M., Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl., 415, 1, 20-30 (2006) · Zbl 1088.65037
[29] Gonzalez, J. A.; Park, K. C.; Felippa, C. A.; Abascal, R., A formulation based on localized Lagrange multipliers for BEM-FEM coupling in contact problems, Comput. Methods Appl. Mech. Engrg., 197, 6-8, 623-640 (2008) · Zbl 1169.74639
[30] Jagtap, A. D.; Karniadakis, G. E., Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations, Commun. Comput. Phys., 28, 5, 2002-2041 (2020) · Zbl 1542.65182
[31] Wang, Y. P.; Navon, I. M.; Wang, X. Y.; Cheng, Y., 2D Burgers equation with large Reynolds number using POD/DEIM and calibration, Internat. J. Numer. Methods Fluids, 82, 12, 909-931 (2016)
[32] Ahn, J. G.; Yang, H. I.; Kim, J. G., Multipoint constraints with Lagrange multiplier for system dynamics and its reduced-order modeling, AIAA J., 58, 1, 385-401 (2020)
[33] Bergstra, J.; Bengio, Y., Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281-305 (2012) · Zbl 1283.68282
[34] Y. Tong, Z. Hong, Hyper-parameter optimization: a review of algorithms and applications. arXiv preprint. arXiv:2003.05689.
[35] LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (2007), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 1127.65080
[36] Jagtap, A. D.; Kharazmi, E.; Karniadakis, G. E., Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems, Comput. Methods Appl. Mech. Engrg., 365 (2020) · Zbl 1442.92002
[37] Zhang, X. H.; Ouyang, J.; Zhang, L., Element-free characteristic Galerkin method for Burgers’ equation, Eng. Anal. Bound. Elem., 33, 3, 356-362 (2009) · Zbl 1244.76097
[38] Siraj-ul-Islam; Sarler, B.; Vertnik, R.; Kosec, G., Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations, Appl. Math. Model., 36, 3, 1148-1160 (2012) · Zbl 1243.76076
[39] Corbetta, A.; Menkovski, V.; Benzi, R.; Toschi, F., Deep learning velocity signals allow quantifying turbulence intensity, Sci. Adv., 7, 12 (2001)
[40] Mao, Z. P.; Jagtap, A. D.; Karniadakis, G. E., Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Engrg., 360 (2020) · Zbl 1442.76092
[41] Bathe, K. J., Finite Element Procedures (2006), Prentice Hall: Prentice Hall New Jersey
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.