×

On equivariant Gromov-Witten invariants of resolved conifold with diagonal and anti-diagonal actions. (English) Zbl 1507.53085

Summary: We propose two conjectural relationships between the equivariant Gromov-Witten invariants of the resolved conifold under diagonal and anti-diagonal actions and the Gromov-Witten invariants of \(\mathbb{P}^1\) and verify their validity in genus zero approximation. We also provide evidences to support the validity of these relationships in genus one and genus two.

MSC:

53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Belorousski, P., Pandharipande, R.: A descendent relation in genus 2. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 171-191 (2000) · Zbl 0981.81063
[2] Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 45-88 (1997) · Zbl 0909.14006 · doi:10.1007/s002220050136
[3] Brini, A., The local Gromov-Witten theory of \(\mathbb{P}^1\) and integrable hierarchies, Commun. Math. Phys., 313, 571-605 (2012) · Zbl 1261.14029 · doi:10.1007/s00220-012-1517-9
[4] Brini, A.; Carlet, G.; Rossi, P., Integrable hierarchies and the mirror model of local \(\mathbb{P}^1 \), Phys. D, 241, 2156-2167 (2012) · Zbl 1322.37030 · doi:10.1016/j.physd.2011.09.011
[5] Bryan, J.; Pandharipande, R., The local Gromov-Witten theory of curves, J. Am. Math. Soc., 21, 101-136 (2008) · Zbl 1126.14062 · doi:10.1090/S0894-0347-06-00545-5
[6] Carlet, G.; Dubrovin, B.; Zhang, Y., The extended Toda hierarchy, Mosc. Math. J., 4, 313-332 (2004) · Zbl 1076.37055 · doi:10.17323/1609-4514-2004-4-2-313-332
[7] Coates, T.; Givental, A., Quantum Riemann-Roch, Lefschetz and Serre, Ann. Math., 165, 15-53 (2007) · Zbl 1189.14063 · doi:10.4007/annals.2007.165.15
[8] Coates, T., Givental, A., Tseng, H.-H.: Virasoro constraints for toric bundles, arXiv:1508.06282
[9] Dijkgraaf, R.; Witten, E., Mean field theory, topological field theory, and multi-matrix models, Nucl. Phys. B, 342, 486-522 (1990) · doi:10.1016/0550-3213(90)90324-7
[10] Dubrovin, B., Integrable systems in topological field theory, Nucl. Phys. B, 379, 627-689 (1992) · doi:10.1016/0550-3213(92)90137-Z
[11] Dubrovin, B.: Integrable systems and classification of 2D topological field theories. In: Babelon, O., Cartier, P., Kosmann-Schwarzbach, Y. (eds.) “Integrable Systems”, The J.-L. Verdier Memorial Conference, Actes du Colloque International de Luminy, pp. 313-359. Birkhäuser (1993) · Zbl 0824.58029
[12] Dubrovin B.: Geometry of 2D topological field theories. In: Francaviglia M., Greco S. (eds.) “Integrable Systems and Quantum Groups” (Montecatini Terme, 1993), pp. 120-348. Springer (1996) · Zbl 0841.58065
[13] Dubrovin, B., On almost duality for Frobenius manifolds, in geometry, topology, and mathematical physics, Am. Math. Soc. Transl. Ser., 212, 75-132 (2004) · Zbl 1063.53092
[14] Dubrovin, B., On universality of critical behaviour in Hamiltonian PDEs, Am. Math. Soc. Transl., 224, 59-109 (2008) · Zbl 1172.35001
[15] Dubrovin, B.; Sidoravičius, V., Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions, New trends in mathematical physics, 231-276 (2009), Dordrecht: Springer, Dordrecht · Zbl 1207.35032 · doi:10.1007/978-90-481-2810-5_18
[16] Dubrovin, B.; Liu, S-Q; Yang, D.; Zhang, Y., Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs, Adv. Math., 293, 382-435 (2016) · Zbl 1335.53114 · doi:10.1016/j.aim.2016.01.018
[17] Dubrovin, B.; Liu, S-Q; Yang, D.; Zhang, Y., Hodge-GUE correspondence and the discrete KdV equation, Commun. Math. Phys., 379, 461-490 (2020) · Zbl 1455.37056 · doi:10.1007/s00220-020-03846-6
[18] Dubrovin, B.; Liu, S-Q; Zhang, Y., On the genus two free energies for semisimple Frobenius manifold, Russ. J. Math. Phys., 19, 273-298 (2012) · Zbl 1325.53114 · doi:10.1134/S1061920812030028
[19] Dubrovin, B.; Yang, D., Generating series for GUE correlators, Lett. Math. Phys., 107, 1971-2012 (2017) · Zbl 1380.37126 · doi:10.1007/s11005-017-0975-6
[20] Dubrovin, B.; Yang, D., On cubic Hodge integrals and random matrices, Commun. Number Theory Phys., 11, 311-336 (2017) · Zbl 1439.14091 · doi:10.4310/CNTP.2017.v11.n2.a3
[21] Dubrovin, B.; Yang, D.; Zagier, D., Gromov-Witten invariants of the Riemann sphere, Pure Appl. Math. Q., 16, 153-190 (2020) · Zbl 1453.14133 · doi:10.4310/PAMQ.2020.v16.n1.a4
[22] Dubrovin, B.; Zhang, Y., Frobenius manifold and Virasoro constraints, Sel. Math., 5, 423-466 (1999) · Zbl 0963.81066 · doi:10.1007/s000290050053
[23] Dubrovin, B.; Zhang, Y., Bi-hamiltonian hierarchies in 2D topological field theory at one-loop approximation, Commun. Math. Phys., 198, 311-361 (1998) · Zbl 0923.58060 · doi:10.1007/s002200050480
[24] Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, arXiv:math/0108160
[25] Dubrovin, B.; Zhang, Y., Virasoro symmetries of the extended Toda hierarchy, Commun. Math. Phys., 250, 161-193 (2004) · Zbl 1071.37054 · doi:10.1007/s00220-004-1084-9
[26] Eguchi, T.; Getzler, E.; Xiong, C-S, Topological gravity in genus 2 with two primary fields, Adv. Theor. Math. Phys., 4, 981-1000 (2000) · Zbl 1011.81069 · doi:10.4310/ATMP.2000.v4.n4.a6
[27] Eguchi, T.; Yamada, Y.; Yang, S-K, On the genus expansion in the topological string theory, Rev. Math. Phys., 7, 279-309 (1995) · Zbl 0837.58043 · doi:10.1142/S0129055X95000141
[28] Eguchi, T.; Yang, S-K, The topological CP1 model and the large-N matrix integral, Mod. Phys. Lett. A, 9, 2893-2902 (1994) · Zbl 1021.81817 · doi:10.1142/S0217732394002732
[29] Getzler, E.: The Toda conjecture. In: Symplectic geometry and mirror symmetry, pp. 51-79. World Science Publishing, NJ (2001) · Zbl 1047.37046
[30] Getzler, E., Intersection theory on \(\overline{{\cal{M} }}_{1,4}\) and elliptic Gromov-Witten invariants, J. Am. Math. Soc., 10, 973-998 (1997) · Zbl 0909.14002 · doi:10.1090/S0894-0347-97-00246-4
[31] Getzler, E.: Topological recursion relations in genus 2. In: Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pp. 73-106. World Science Publishing, NJ (1998) · Zbl 1021.81056
[32] Givental, AB, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 1, 551-568 (2001) · Zbl 1008.53072 · doi:10.17323/1609-4514-2001-1-4-551-568
[33] Kontsevich, M.; Manin, Yu, Gromov-Witten classes, quantum cohomology and enumerative geometry, Commun. Math. Phys., 164, 525-562 (1994) · Zbl 0853.14020 · doi:10.1007/BF02101490
[34] Li, J.; Tian, G., Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Am. Math. Soc., 11, 119-174 (1998) · Zbl 0912.14004 · doi:10.1090/S0894-0347-98-00250-1
[35] Liu, S-Q; Yang, D.; Zhang, Y.; Zhou, C., The Hodge-FVH correspondence, J. Reine Angew. Math., 775, 259-300 (2021) · Zbl 1470.37087 · doi:10.1515/crelle-2020-0051
[36] Mumford, A.: Towards an enumerative geometry of the moduli space of curves. In: Arith. Geom., pp. 271-328. Birkhäuser, Boston (1983) · Zbl 0554.14008
[37] Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz theory and completed cycles, Ann. Math., 163, 517-560 (2006) · Zbl 1105.14076 · doi:10.4007/annals.2006.163.517
[38] Okounkov, A.; Pandharipande, R., The equivariant Gromov-Witten theory of \({\mathbb{P} }^1\), Ann. Math., 163, 561-605 (2006) · Zbl 1105.14077 · doi:10.4007/annals.2006.163.561
[39] Ruan, Y.; Tian, G., A mathematical theory of quantum cohomology, J. Diff. Geom., 42, 259-367 (1995) · Zbl 0860.58005
[40] Strachan, IAB; Stedman, R., Generalized Legendre transformations and symmetries of the WDVV equations, J. Phys. A, 50, 17 (2017) · Zbl 1362.35009 · doi:10.1088/1751-8121/aa58b2
[41] Vekslerchik, VE, Functional representation of the Ablowitz-Ladik hierarchy, J. Phys. A, 31, 1087-1099 (1998) · Zbl 0932.35185 · doi:10.1088/0305-4470/31/3/018
[42] Vekslerchik V. E.: Universality of the Ablowitz-Ladik hierarchy, arXiv:solv-int/9807005v1 · Zbl 0932.35185
[43] Witten, E., Two dimensional gravity and intersection theory on moduli space, Surv. Diff. Geom., 1, 243-310 (1991) · Zbl 0757.53049 · doi:10.4310/SDG.1990.v1.n1.a5
[44] Zhang, Y., On the \(CP^1\) topological sigma model and the Toda lattice hierarchy, J. Geom. Phys., 40, 215-232 (2002) · Zbl 1001.37066 · doi:10.1016/S0393-0440(01)00036-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.