×

Translation and modulation invariant Banach spaces of tempered distributions satisfy the metric approximation property. (English) Zbl 1507.43001

A Banach space \((B, \Vert \cdot \Vert_B )\) has the bounded approximation property if there exists a constant \(C_B \geq 1\) such that for any compact set \(M \subset B\) and \(\epsilon > 0\) there exists a finite rank operator \(F\) on \(B\) with \[ ||| F |||_{B \rightarrow B} \leq C_B \text{ and } \Vert F(f) - f \Vert \leq \epsilon \text{ for all } f \in M. \] Denote by \(\mathcal{S}(\mathbb{R}^d)\) the Schwartz space of rapidly decreasing functions on \(\mathbb{R}^d\). The Banach space \((B,{ \Vert \cdot \Vert_B }) \) is defined to be a minimal tempered standard space (MINTSTA) if the following conditions are satisfied:
1.
The chain of embeddings \[ \mathcal{S}(\mathbb{R}^d) \hookrightarrow (B, \Vert \cdot \Vert_B) \hookrightarrow \mathcal{S}^{'}(\mathbb{R}^d). \] are continuous.
2.
\(\mathcal{S}(\mathbb{R}^d)\) is dense in \((B, \Vert \cdot \Vert_B)\).
3.
\((B, \Vert \cdot \Vert_B)\) is translation invariant, and for some \(s_1 \in \mathbb{N}\) and \(C_1 > 0\) one has \[ \Vert T_x f \Vert_B \leq C_1 \langle x \rangle^{s_1}\, \Vert f \Vert_B, \text{ for all }x \in \mathbb{R}^d, \, f \in B. \]
4.
\((B, \Vert \cdot \Vert_B)\) is modulation invariant, and for some \(s_2 \in \mathbb{N}\) and \(C_2 > 0\) one has \[ \Vert M_y f \Vert_B \leq C_2 \langle y \rangle^{s_2}\, \Vert f \Vert_B, \text{ for all } y \in \mathbb{R}^d, \, f \in B. \]
Here \(\langle x \rangle^{s_1}\) and \(\langle y \rangle^{s_2}\) represent a Beurling weight of polynomial type.
The main result of the paper under review is: Any MINTSTA satisfies the bounded approximation property.

MSC:

43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A10 Measure algebras on groups, semigroups, etc.
46F05 Topological linear spaces of test functions, distributions and ultradistributions
46B28 Spaces of operators; tensor products; approximation properties
Full Text: DOI

References:

[1] R. Aceska, Functions of variable bandwidth: A time-frequency approach, Ph.D. thesis, University of Vienna (2009).
[2] Aceska, R. and Feichtinger, H. G., Functions with variable bandwidth via time-frequency analysis tools, J. Math. Anal. Appl.382(1) (2011 ) 275-289. · Zbl 1223.42022
[3] Aceska, R. and Feichtinger, H. G., Reproducing kernels and variable bandwidth, J. Funct. Spaces2012 (2012) 469341. · Zbl 1264.46018
[4] K. Beanland and D. Freeman, Shrinking Schauder frames and their associated bases, preprint (2022), arXiv:2205.09783.
[5] Benyi, A. and Okoudjou, K. A., Modulation Spaces. With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations, (Springer (Birkhäuser), New York, 2020). · Zbl 1476.35001
[6] Braun, W. and Feichtinger, H. G., Banach spaces of distributions having two module structures, J. Funct. Anal.51 (1983) 174-212. · Zbl 0515.46045
[7] Casazza, P. G., Han, D. and Larson, D. R., Frames for Banach spaces, in The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999), eds. Baggett, L. and Larson, D. R., , Vol. 247 (American Mathematical Society, Providence, RI, 1999), pp. 149-182. · Zbl 0947.46010
[8] Christensen, O., An Introduction to Frames and Riesz Bases, , 2nd edn. (BirkhäuserBasel, 2016). · Zbl 1348.42033
[9] Cordero, E. and Rodino, L., Time-Frequency Analysis of Operators and Applications, (De Gruyter, Berlin, 2020). · Zbl 07204958
[10] Dahlke, S., Häuser, S., Steidl, G. and Teschke, G., Shearlet coorbit spaces: Traces and embeddings in higher dimensions, Monatsh. Math.169(1) (2013) 15-32. · Zbl 1260.22004
[11] Dahlke, S., Häuser, S. and Teschke, G., Coorbit space theory for the Toeplitz shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process.10(04) (2012) 1250037. · Zbl 1252.42031
[12] Dahlke, S., Kutyniok, G., Steidl, G. and Teschke, G., Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal.27(2) (2009) 195-214. · Zbl 1171.42019
[13] Dahlke, S., Steidl, G. and Teschke, G., The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. Appl.16(3) (2010) 340-364. · Zbl 1194.42038
[14] Defant, A. and Floret, K., Tensor Norms and Operator Ideals, , Vol. 176 (North-Holland, Amsterdam, 1993), xi, 566 pp. · Zbl 0774.46018
[15] Delgado, J. and Ruzhansky,, M.\( L^p\)-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups, J. Math. Pures Appl. (9)102(1) (2014) 153-172. · Zbl 1296.47019
[16] Delgado, J., Ruzhansky, M. and Wang, B., Approximation property and nuclearity on mixed-norm \(L^p\), modulation and Wiener amalgam spaces, J. London Math. Soc. (2)94(2) (2016) 391-408. · Zbl 1381.46018
[17] Dimovski, P., Pilipovic, S., Prangoski, B. and Vindas, J., Translation-modulation invariant Banach spaces of ultradistributions, J. Fourier Anal. Appl.25(3) (2019) 819-841. · Zbl 1426.46026
[18] Dimovski, P., Pilipovic, S. and Vindas, J., New distribution spaces associated to translation-invariant Banach spaces, Monatsh. Math.177(4) (2015) 495-515. · Zbl 1337.46031
[19] Domar, Y., Harmonic analysis based on certain commutative Banach algebras, Acta Math.96 (1956) 1-66. · Zbl 0071.11302
[20] Dunford, D. H., Segal algebras and left normed ideals, J. London Math. Soc. (2)8 (1974) 514-516. · Zbl 0302.43009
[21] Enflo, P., A counterexample to the approximation problem in Banach spaces, Acta Math.130 (1973) 309-317. · Zbl 0267.46012
[22] Feichtinger, H. G., Gewichtsfunktionen auf lokalkompakten Gruppen, Sitz.ber. Österreich. Akad. Wiss. Math.-Natur. Kl.188 (1979) 451-471. · Zbl 0447.43004
[23] Feichtinger, H. G., Banach spaces of distributions having a pointwise and a convolutive module structure, in Proc. Conf. Topics in Modern Analysis (Istituto Nazionale di Alta Matematica Francesco Severi, Torino/Milano, 1983), pp. 1039-1054. · Zbl 0541.46040
[24] Feichtinger, H. G., Compactness in translation invariant Banach spaces of distributions and compact multipliers, J. Math. Anal. Appl.102 (1984) 289-327. · Zbl 0515.46044
[25] Feichtinger, H. G., Modulation spaces on locally compact Abelian groups, in Proc. Int. Conf. Wavelets and Applications, eds. Radha, R., Krishna, M. and Thangavelu, S. (Allied Publishers, New Delhi, 2003), pp. 1-56.
[26] Feichtinger, H. G., Modulation spaces: Looking back and ahead, Sampl. Theory Signal Image Process.5(2) (2006) 109-140. · Zbl 1156.43300
[27] Feichtinger, H. G. and Braun, W., Banach spaces of distributions with double module structure and twisted convolution, in Proc. Alfred Haar Memorial Conf., , Vol. 49 (North Holland, 1985), pp. 225-246. · Zbl 0619.46037
[28] Feichtinger, H. G. and Gröchenig, K., A unified approach to atomic decompositions via integrable group representations, Lect. Notes Math.1302 (1988) 52-73. · Zbl 0658.22007
[29] Feichtinger, H. G. and Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal.86(2) (1989) 307-340. · Zbl 0691.46011
[30] Feichtinger, H. G. and Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math.108(2-3) (1989) 129-148. · Zbl 0713.43004
[31] Feichtinger, H. G. and Gröchenig, K., Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in Wavelets: A Tutorial in Theory and Applications, ed. Chui, C. K., , Vol. 2 (Academic Press, Boston, 1992), pp. 359-397. · Zbl 0849.43003
[32] Feichtinger, H. G. and Gumber, A., Completeness of shifted dilates in invariant Banach spaces of tempered distributions, Proc. Amer. Math. Soc.149(12) (2021) 5195-5210. · Zbl 1507.46029
[33] Feichtinger, H. G. and Gumber, A., Approximation by linear combinations of translates in invariant Banach spaces of tempered distributions via Tauberian conditions, J. Approx. Theory (2022) 17 pp, submitted.
[34] Gröchenig, K., Describing functions: Atomic decompositions versus frames, Monatsh. Math.112(3) (1991) 1-41. · Zbl 0736.42022
[35] Gröchenig, K., Foundations of Time-Frequency Analysis, (Birkhäuser, Boston, MA, 2001). · Zbl 0966.42020
[36] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc.1955(16) (1955) 140. · Zbl 0064.35501
[37] Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups (Springer, Berlin, Heidelberg, New York, 1970). · Zbl 0213.40103
[38] Johnson, W., Rosenthal, H. and Zippin, M., On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math.9 (1971) 488-506. · Zbl 0217.16103
[39] Labate, D., Mantovani, L. and Negi, P., Shearlet smoothness spaces, J. Fourier Anal. Appl.19 (2013) 577-611. · Zbl 1306.42049
[40] Pelczynski, A., Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math.40 (1971) 239-243. · Zbl 0223.46019
[41] Pietsch, A., Operator Ideals, North-Holland Mathematical Library, Vol. 20 (North-Holland, Amsterdam-New York, 1980). · Zbl 0434.47030
[42] A. Pietsch, Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics, Vol. 13, Licensed edn. (Cambridge University Press, Cambridge, 1987), 360 pp. (Orig. Akademische Verlagsgesellschaft Geest & Portig K.-G., 1987). · Zbl 0615.47019
[43] Reiter, H., Classical Harmonic Analysis and Locally Compact Groups (Clarendon Press, Oxford, 1968). · Zbl 0165.15601
[44] Reiter, H. and Stegeman, J. D., Classical Harmonic Analysis and Locally Compact Groups, 2nd edn. (Clarendon Press, Oxford, 2000). · Zbl 0965.43001
[45] Rieffel, M. A., Multipliers and tensor products of \(L^p\)-spaces of locally compact groups, Studia Math.33 (1969) 71-82. · Zbl 0177.41702
[46] Sentilles, F. D. and Taylor, D. C., Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc.142 (1969) 141-152. · Zbl 0185.21103
[47] Spector, R., Groupes localement isomorphes et transformation de Fourier avec poids, Ann. Inst. Fourier (Grenoble)19(1) (1969) 195-217. · Zbl 0201.17702
[48] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, NJ, 1970). · Zbl 0207.13501
[49] Temlyakov, V. N., Greedy Approximation, , No. 20 (Cambridge University Press, 2011). · Zbl 1279.41001
[50] Triebel, H., Theory of Function Spaces, , Vol. 78 (Birkhäuser, Basel, 1983). · Zbl 0546.46027
[51] Triebel, H., Theory of Function Spaces II, , Vol. 84 (Birkhäuser, Basel, 1992). · Zbl 0763.46025
[52] Triebel, H., Theory of Function Spaces III, , Vol. 100 (Birkhäuser, 2006). · Zbl 1104.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.