×

Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. (English) Zbl 1507.37087

Summary: In this paper, we study the sufficient conditions for the existence of solutions of first-order Hamiltonian random impulsive differential equations under Dirichlet boundary value conditions. By using the variational method, we first obtain the corresponding energy functional. And by using Legendre transformation, we obtain the conjugation of the functional. Then the existence of critical point is obtained by mountain pass lemma. Finally, we assert that the critical point of the energy functional is the mild solution of the first order Hamiltonian random impulsive differential equation. Finally, an example is presented to illustrate the feasibility and effectiveness of our results.

MSC:

37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
37H10 Generation, random and stochastic difference and differential equations
34F05 Ordinary differential equations and systems with randomness
34K50 Stochastic functional-differential equations

References:

[1] R. P. Agarwal; D. O’Rgean, A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem, Appl. Math. Comput., 161, 433-439 (2005) · Zbl 1070.34042 · doi:10.1016/j.amc.2003.12.096
[2] A. Ambrosetti; G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 255, 405-421 (1981) · Zbl 0466.70022 · doi:10.1007/BF01450713
[3] T. E. Carter, Optimal impulsive space trajectories based on linear equations, J. Optim. Theory Appl., 70, 277-297 (1991) · Zbl 0732.49025 · doi:10.1007/BF00940627
[4] L. Chen; J. Sun, Nonlinear boundary value problem of first order impulsive functional differential equations, J. Math. Anal. Appl., 318, 726-741 (2006) · Zbl 1102.34052 · doi:10.1016/j.jmaa.2005.08.012
[5] P. Chen; X. Tang, Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems, Appl. Math. Comput., 218, 11775-11789 (2012) · Zbl 1282.34035 · doi:10.1016/j.amc.2012.05.027
[6] S. Deng; X.-B. Shu; J. Mao, Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J. Math. Anal. Appl., 467, 398-420 (2018) · Zbl 1405.60075 · doi:10.1016/j.jmaa.2018.07.002
[7] P. R. George; A. K. Nandakumaran; A. Arapostathis, A note on controllability of impulsive systems, J. Math. Anal. Appl., 241, 276-283 (2000) · Zbl 0965.93015 · doi:10.1006/jmaa.1999.6632
[8] Z.-H. Guan; G. Chen; T. Ueta, On impulsive control of a periodically forced chaotic pendulum system, IEEE Trans. Automat. Control, 45, 1724-1727 (2000) · Zbl 0990.93105 · doi:10.1109/9.880633
[9] Y. Guo, X.-B. Shu, Y. Li and F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order \(1 < \beta < 2\), Bound. Value Probl., (2019), Paper No. 59. · Zbl 1524.34205
[10] J. Li; J. J. Nieto; J. Shen, Impulsive periodic boundary value problems of first-order differ- ential equations, J. Math. Anal. Appl., 325, 226-236 (2007) · Zbl 1110.34019 · doi:10.1016/j.jmaa.2005.04.005
[11] S. Li; L. Shu; X.-B. Shu; F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91, 857-872 (2019) · Zbl 1506.37074 · doi:10.1080/17442508.2018.1551400
[12] J. Q. Liu; Z. Q. Wang, Remarks on subharmonics with minimal periods of Hamiltonian systems, Nonlinear Anal., 20, 803-821 (1993) · Zbl 0789.58030 · doi:10.1016/0362-546X(93)90070-9
[13] X. Liu; A. R. Willms, Impulsive controllability of linear dynamical systems with applications to maneuvers of Spacecraft, Math. Problems Engineer., 2, 277-299 (1996) · Zbl 0876.93014 · doi:10.1155/S1024123X9600035X
[14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. · Zbl 0676.58017
[15] J. J. Nieto, Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 23, 940-942 (2010) · Zbl 1197.34041 · doi:10.1016/j.aml.2010.04.015
[16] J. J. Nietoa; D. O’Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10, 680-690 (2009) · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[17] P. P. Niu; X.-B. Shu; Y. J. Li, The Existence and Hyers-Ulam stability for second order random impulsive differential equation, Dynamic Systems and Applications, 28, 673-690 (2019)
[18] A. F. B. A. Prado, Bi-impulsive control to build a satellite constellation, Nonlinear Dyn. Syst. Theory, 5, 169-175 (2005) · Zbl 1128.70015
[19] J. Shen; W. Wang, Impulsive boundary value problems with nonlinear boundary conditions, Nonlinear Anal., 69, 4055-4062 (2008) · Zbl 1171.34309 · doi:10.1016/j.na.2007.10.036
[20] X.-B. Shu; Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273, 465-476 (2016) · Zbl 1410.34031 · doi:10.1016/j.amc.2015.10.020
[21] J. Sun; H. Chen; J. J. Nieto, Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Math. Comput. Modelling, 54, 544-555 (2011) · Zbl 1225.37070 · doi:10.1016/j.mcm.2011.02.044
[22] J. Sun; H. Chen; J. J. Nieto; M. Otero-Novoa, The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., 72, 4575-4586 (2010) · Zbl 1198.34036 · doi:10.1016/j.na.2010.02.034
[23] Y. Tian; W. G. Ge, Applications of variational methods to boundary value problem for impulsive differ- ential equations, Proc. Edinb. Math. Soc., 51, 509-527 (2008) · Zbl 1163.34015 · doi:10.1017/S0013091506001532
[24] S. Wu; Y. Duan, Oscillation stability and boundedness of second-order differential systems with random impulses, Comput. Math. Appl., 49, 1375-1386 (2005) · Zbl 1085.34044 · doi:10.1016/j.camwa.2004.12.009
[25] S.-J. Wu; X.-L. Guo; S.-Q. Lin, Existence and uniqueness of solutions to random impulsive differential systems, Acta Math. Appl. Sin. Engl. Ser., 22, 627-632 (2006) · Zbl 1118.34049 · doi:10.1007/s10255-006-0336-1
[26] S.-J. Wu; X.-Z Meng, Boundedness of nonlinear differential systems with impulsive effect on random moments, Acta Math. Appl. Sin. Engl. Ser., 20, 147-154 (2004) · Zbl 1078.34512 · doi:10.1007/s10255-004-0157-z
[27] X. Xian, D. O’Regan and R. P. Agarwa, Multiplicity results via topological degree for impulsive boundary value problems under non-well-ordered upper and lower solution conditions, Bound. Value Probl., (2008), Art. ID 197205, 21 pp. · Zbl 1158.34015
[28] J. Xie, J. Li and Z. Luo, Periodic and subharmonic solutions for a class of the second-order Hamiltonian systems with impulsive effects, Bound Value Probl., 2015 (2015), Article number 52, 10 pp. · Zbl 1330.34033
[29] J. Yu; H. Bin; Z. Guo, Periodic solutions for discrete convex Hamiltonian systems via Clarke duality[EB/OL], Discrete Contin. Dyn. Syst., 15, 939-950 (2006) · Zbl 1121.39012 · doi:10.3934/dcds.2006.15.939
[30] Z. Zhang; R. Yuan, An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Analysis: Real World Applications, 11, 155-162 (2010) · Zbl 1191.34039 · doi:10.1016/j.nonrwa.2008.10.044
[31] J. Zhou; Y. Li, Existence of solutions for a class of second order Hamiltonian systems with impulsive effects, Nonlinear Anal., 72, 1594-1603 (2010) · Zbl 1193.34057 · doi:10.1016/j.na.2009.08.041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.