×

Existence and uniqueness of equilibrium states for systems with specification at a fixed scale: an improved Climenhaga-Thompson criterion. (English) Zbl 1507.37042

The authors extend a theorem of V. Climenhaga and D. J. Thompson [Adv. Math. 303, 745–799 (2016; Zbl 1366.37084)] concerning the existence and uniqueness of equilibrium states for flows with the purpose of applying the results to flows with fixed points. Theorems of this flavor go back to the work of R. Bowen [Math. Syst. Theory 8, 193–202 (1975; Zbl 0299.54031)] in the 1970’s where he considered an expansive discrete time dynamical system and gave sufficient regularity conditions for a potential to ensure that it has a unique equilibrium state. This was extended by E. Franco [Am. J. Math. 99, 486–514 (1977; Zbl 0368.54014)] to the case of flows, and these results were then made applicable to much larger classes of systems by weakening the hypotheses, allowing bad behavior on small parts of the space (in terms of topological pressure).
The present paper continues this line of research by further weakening the hypotheses in the result of V. Climenhaga and D. J. Thompson [loc. cit.]. Specifically, the authors weaken the assumptions by requiring a regularity condition at a single scale rather than at all scales.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
Full Text: DOI

References:

[1] Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Am. Math. Soc., 153, 401-414 (1971) · Zbl 0212.29201 · doi:10.1090/s0002-9947-1971-0274707-x
[2] Bowen, R., Maximizing entropy for a hyperbolic flow, Math. Syst. Theory, 7, 300-303 (1974) · Zbl 0303.58014 · doi:10.1007/bf01795948
[3] Bowen, R., Some systems with unique equilibrium states, Math. Syst. Theory, 8, 193-202 (1975) · Zbl 0299.54031 · doi:10.1007/bf01762666
[4] Bowen, R.; Chazottes, J. -R, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. (Lecture Notes in Mathematics (2008), Berlin: Springer, Berlin · Zbl 1172.37001
[5] Climenhaga, V.; Fisher, T.; Thompson, D., Unique equilibrium states for Bonatti-Viana diffeomorphisms, Nonlinearity, 31, 2532-2570 (2018) · Zbl 1391.37029 · doi:10.1088/1361-6544/aab1cd
[6] Climenhaga, V.; Fisher, T.; Thompson, D., Equilibrium states for Mañé diffeomorphisms, Ergod. Theor. Dynam. Syst., 39, 2433-2455 (2019) · Zbl 1479.37030 · doi:10.1017/etds.2017.125
[7] Climenhaga, V.; Knieper; War, G.; War, K., Uniqueness of the measure of maximal entropy for geodesic flows on certain manifolds without conjugate points, Adv. Math., 376 (2021) · Zbl 1464.37042 · doi:10.1016/j.aim.2020.107452
[8] Climenhaga, V.; Pavlov, R., One-sided almost specification and intrinsic ergodicity, Ergod. Theor. Dynam. Syst., 39, 2456-2480 (2019) · Zbl 1422.37004 · doi:10.1017/etds.2017.135
[9] Climenhaga, V.; Thompson, D., Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors, Isr. J. Math., 192, 785-817 (2012) · Zbl 1279.37011 · doi:10.1007/s11856-012-0052-x
[10] Climenhaga, V.; Thompson, D., Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Adv. Math., 303, 745-799 (2016) · Zbl 1366.37084 · doi:10.1016/j.aim.2016.07.029
[11] Climenhaga, V.; Thompson, D., Beyond Bowen’s specification property (2020)
[12] Climenhaga, V., An improved non-uniform specification result. On Vaughn Climenhaga’s math blog (2022)
[13] Franco, E., Flows with unique equilibrium states, Am. J. Math., 99, 486-514 (1977) · Zbl 0368.54014 · doi:10.2307/2373927
[14] Liao, S. T., The Qualitative Theory of Differential Dynamical Systems (1996), New York: Science Press, New York · Zbl 1076.00513
[15] Pacifico, M. J.; Yang, F.; Yang, J., Entropy theory for sectional hyperbolic flows, Ann. Inst. Henri Poincaré C, 38, 1001-1030 (2021) · Zbl 1478.37031 · doi:10.1016/j.anihpc.2020.10.001
[16] Pacifico, M. J.; Yang, F.; Yang, J., Uniqueness of equilibrium states for Lorenz attractors in any dimension
[17] Ruelle, D., A measure associated with axiom-A attractors, Am. J. Math., 98, 619-654 (1976) · Zbl 0355.58010 · doi:10.2307/2373810
[18] Ruelle, D., Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics. (Encyclopedia of Mathematics and its Applications (1978), Reading, MA: Addison-Wesley, Reading, MA · Zbl 0401.28016
[19] Sarig, O., Thermodynamic formalism for countable Markov shifts, Ergod. Theor. Dynam. Syst., 19, 1565-1593 (1999) · Zbl 0994.37005 · doi:10.1017/s0143385799146820
[20] Sinai, J. G., Gibbs measures in ergodic theory, Russ. Math. Surv., 27, 21-69 (1972) · Zbl 0255.28016 · doi:10.1070/rm1972v027n04abeh001383
[21] Bowen, R.; Ruelle, D., The ergodic theory of axiom A flows, Invent. Math., 29, 181-202 (1975) · Zbl 0311.58010 · doi:10.1007/bf01389848
[22] Walters, P., An Introduction to Ergodic Theory (1982), Berlin: Springer, Berlin · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.