×

Practical partial stability of time-varying systems. (English) Zbl 1507.34060

The authors investigate the practical asymptotic and exponential partial stability of time-varying nonlinear systems, and a more general converse theorem to guarantee the practical exponential partial stability of such systems is presented by using the Lyapunov theory. Furthermore, the practical uniform asymptotic and exponential partial stability of some classes of perturbed systems are discussed based on a practical scalar function, and some illustrate examples are given to verify the established results.

MSC:

34D20 Stability of solutions to ordinary differential equations
37C60 Nonautonomous smooth dynamical systems
Full Text: DOI

References:

[1] A. Benabdallah; M. Dlala; M. A. Hammami, A new Lyapunov function for stability of time-varying nonlinear perturbed systems, Systems and Control Letters, 56, 179-187 (2007) · Zbl 1114.93083 · doi:10.1016/j.sysconle.2006.08.009
[2] A. Benabdallah; I. Ellouze; M. A. Hammami, Practical stability of nonlinear time-varying cascade systems, Journal of Dynamical and Control Systems, 15, 45-62 (2009) · Zbl 1203.93160 · doi:10.1007/s10883-008-9057-5
[3] A. Ben Makhlouf, Partial practical stability for fractional-order nonlinear systems, Mathematical Methods in the Applied Sciences, (2020).
[4] T. Caraballo; F. Ezzine; M. A. Hammami; L. Mchiri, Practical stability with respect to a part of variables of stochastic differential equations, Stochastics, 93, 647-664 (2021) · Zbl 1492.93190 · doi:10.1080/17442508.2020.1773826
[5] M. Yu. Filimonov, Global asymptotic stability with respect to part of the variable for solutions of systems of ordinary differential equations, Differential Equations, 56, 710-720 (2020) · Zbl 1448.34115 · doi:10.1134/S001226612006004X
[6] B. Ghanmi; N. Hadj Taieb; M. A. Hammami, Growth conditions for exponential stability of time-varying perturbed systems, International Journal of Contol, 86, 1086-1097 (2013) · Zbl 1278.93213 · doi:10.1080/00207179.2013.774464
[7] N. Hadj Taieb; M. A. Hammami, Some new results on the global uniform asymptotic stability of time-varying dynamical systems, IMA Journal of Mathematical Control and Information, 35, 901-922 (2018) · Zbl 1402.93216 · doi:10.1093/imamci/dnx006
[8] N. Hadj Taieb, Stability analysis for time-varying nonlinear systems, International Journal of control, (2020), https://doi.org/10.1080/00207179.2020.1861332. · Zbl 1500.34049
[9] N. Hadj Taieb, Indefinite derivative for stability of time-varying nonlinear systems, IMA Journal of Mathematical Control and Information, 38, 534-551 (2021) · Zbl 1475.93094 · doi:10.1093/imamci/dnaa040
[10] J. W. Hagood; S. T. Brian, Recovering a function from a Dini derivative, Amer. Math. Monthly, 113, 34-46 (2006) · Zbl 1132.26321 · doi:10.1080/00029890.2006.11920276
[11] H. Khalil, Nonlinear Systems, Third ed. Prentice-Hall Englewood Cliffs, NJ, 2002. · Zbl 1003.34002
[12] V. Lakshmikantham, S. Leela and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World Scientific Publishing Co., Inc., Teaneck, NJ, 1990. · Zbl 0753.34037
[13] J. Lasalle and S. Lefschetz, Stability by lyapunov direct method, with application, Mathematics in Science and Engineering, Academic Press, New York-London, 4 (1961). · Zbl 0098.06102
[14] Q. G. Linda; M. L. Jaime; W. H. Herbert, Four SEI endemic models with periodicity and separatrices, Math. Biosci., 128, 157-184 (1995) · Zbl 0834.92021 · doi:10.1016/0025-5564(94)00071-7
[15] A. Martynyuk and Z. Sun, Practical stability and its applications, Beijing: Science Press, (2003).
[16] S. Ruiqing; J. Xiaowu; C. Lansun, The effect of impulsive vaccination on an SIR epidemic model, Applied Mathematics and Computation, 212, 305-311 (2009) · Zbl 1186.92040 · doi:10.1016/j.amc.2009.02.017
[17] E. D. Sontag, Smoimoth stabilization implies copre factorization, IEEE Trans. Automat. Control, 34, 435-443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[18] V. V. Rumyantsev, Partial stability of motion, Mosk. Gos. Univ., Mat. Mekh. Fiz. Astronom. Khim., 4, 9-16 (1957)
[19] V. V. Rumyantsev, Stability of equilibrium of a body with a liquid-filled hollow, Dokl. Akad. Nauk SSSR, 124, 291-294 (1959) · Zbl 0089.40103
[20] V. V. Rumyantsev, Stability of rotational motion of a liquid-filled solid, Prikl. Mat. Mekh., 23, 1057-1065 (1959) · Zbl 0098.37601
[21] V. V. Rumyantsev, Stability of motion of a gyrostat, Prikl. Mat. Mekh., 25, 9-19 (1961) · Zbl 0100.36904 · doi:10.1016/0021-8928(61)90094-6
[22] V. V. Rumyantsev, Stability of motion of solids with liquid-filled hollows, Tr. II Vses. sâezda Po Teor. Prikl. Mekh. Proc. 2 All-Union Congress: Theoretical and Applied Mechanics, Moscow: Nauka, 1 (1965), 57-71.
[23] B. Zhou, On asymtotic stability of linear time-varying systems, Automatica, 68, 266-276 (2016) · Zbl 1334.93152 · doi:10.1016/j.automatica.2015.12.030
[24] B. Zhou, Stability analysis of nonlinear time-varying systems by lyapunov functions with indefinite derivatives, IET Control Theory and Applications, 11, 1434-1442 (2017) · doi:10.1049/iet-cta.2016.1538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.