×

The explicit formula for Gauss-Jordan elimination applied to flexible systems. (English) Zbl 1507.15003

This study focuses on the solution of the so-called flexible systems of linear equations, where the traditional linear algebraic system \(Ax=b\) is extended by adding error terms to each of the entry of the data \(A,b\) to model their imprecision. The solution is then represented by a set of vectors \(x\). First, stability conditions are formulated ensuring that data errors are of reasonable size. Then, a Gauss-Jordan elimination procedure is described providing a mathematical framework to obtain a set of solutions \(x\) for the flexible system. Small illustrative examples are included to illustrate the results. The paper is nicely structured.

MSC:

15A06 Linear equations (linear algebraic aspects)
65F05 Direct numerical methods for linear systems and matrix inversion
03H05 Nonstandard models in mathematics

References:

[1] J. Justino and I. P. van den Berg, Cramer’s rule applied to flexible systems of linear equations, Electronic J Linear Algebra. 24 (2012), 126-152. · Zbl 1253.15007
[2] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. ACM. 8 (1961), 281-330. · Zbl 0109.09005
[3] G. Peters and J. H. Wilkinson, On stability of Gauss-Jordan elimination with pivoting, Commun. ACM, 18 (1975), no. 1, 20-24. · Zbl 0318.65009
[4] K. D. Ikramov, Conditionality of the intermediate matrices of the Gauss, Jordan and optimal elimination methods, USSR Comput. Maths Math. Phys. 18 (1979), 1-16. · Zbl 0409.15007
[5] D. S. Parker, Explicit formulas for the results of Gaussian elimination, 1995, Available from: http://web.cs.ucla.edu.
[6] A. George, K. D. Ikramov, and A. B. Kucherov, On the growth factor in Gaussian elimination for generalized Higham matrices, Linear Algebra Appl. 9 (2002), 107-114. · Zbl 1071.65033
[7] H. Dominic and R. Diana, Sorites Paradox. The Stanford Encyclopedia of Philosophy, Summer 2018 Edition, Available from: http://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/.
[8] Y. Li, An explicit construction of Gauss-Jordan elimination matrix, 2009, Available from: http://arxiv.org/pdf/0907.5038.pdf.
[9] V. N. Tran, J. Justino, and I. P. van den Berg, On the explicit formula for Gauss-Jordan elimination, JP J Algebra Number Theory Appl. 8 (2020), no. 2, 155-166. http://www.jstor.org/stable/20115132. · Zbl 1499.15016
[10] J. G. van der Corput, Introduction to the neutrix calculus, J. d’Analyse Mathématique. 7 (1959), no. 1, 291-398. · Zbl 0097.10503
[11] E. Nelson, Internal set theory: A new approach to nonstandard analysis, Bulletin Am Math Soc. 83 (1977), 1165-1198. · Zbl 0373.02040
[12] V. Kanovei and M. Reeken, Non-standard Analysis, Axiomatically, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, Berlin, 2004. · Zbl 1058.03002
[13] F. Diener and G. Reeb, Analyse Nonstandard, Hermann, Paris, 1989. · Zbl 0682.26010
[14] F. Diener and M. Diener, Editors, Non-standard Analysis in Practice, Springer-Verlag, Berlin, 1995. · Zbl 0848.26015
[15] W. Lyantse and T. Kudryk, Introduction to nonstandard analysis, VNTL Publishers, Lviv, 1997. · Zbl 1102.46313
[16] B. Dinis and I. P. van den Berg, Neutrices and external numbers, A Flexible Number System, Taylor and Francis, London, 2019. · Zbl 1530.03004
[17] V. N. Tran and I. P. van den Berg, An algebraic model for the propagation of errors in matrix calculus, Special Matrices. 8 (2020), no. 1, 68-97. · Zbl 1441.15004
[18] F. Koudjeti and I. P. van den Berg, Neutrices, external numbers and external calculus, In: F. Diener and M. Diener, (Eds.), Non-standard Analysis in Practice, Springer-Verlag, Berlin, 1995.
[19] B. Dinis and I. P. van den Berg, Axiomatics for the external numbers of nonstandard analysis, J. Logic Anal. 9 (2017), no. 7, 1-47. · Zbl 1423.03262
[20] J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd Ed., University Science Books, 1997.
[21] B. Dinis and I. P. van den Berg, Algebraic properties of external numbers, J. Logic Anal. 3 (2011), no. 9, 1-30. · Zbl 1285.03079
[22] F. R. Gantmacher, The Theory of Matrices, vols I and II, Chelsea Publishing Co., New York, 1960.
[23] V. N. Tran and I. P. van den Berg, A parameter method for linear algebra and optimization with uncertainties, Optimization 69 (2020), no. 1, 21-61, . · Zbl 1539.15007 · doi:10.1080/02331934.2019.1638387
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.