×

A study of a family of monomial ideals. (English) Zbl 1507.13010

The article considers rational maps \(\mathbb{P}^1\times\mathbb{P}^1\dashrightarrow\mathbb{P}^3\) that for some bidegree \((m,n)\) send \((s:t;u:v)\) to \[ (s^mv^n:u^mt^n:s^mt^n:s^pu^{m-p}t^qv^{n-q}), \] where \(p\) and \(q\) are positive integers such that \(p<m\) and \(q<n\). A homogeneous polynomial with exponents in the indeterminates \(m\), \(n\), \(p\) and \(q\) is provided such that the image of the above rational map is the zero set of this polynomial (Theorem 3.6). Let \(J\subset \mathbb{C}[s,u,t,v]\) denote the ideal that is generated by the components of the map. The article presents the minimal free graded resolutions of the ideal \(J\) (Theorem 4.2) and the symmetric algebra of \(J\) (Theorem 5.1). Finally, the authors present a method to compute the defining equations of the Rees algebra of \(J\) (Proposition 6.2).

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
14Q10 Computational aspects of algebraic surfaces

Software:

GRIN; 4ti2; SINGULAR
Full Text: DOI

References:

[1] 4ti2 team, 4ti2 — A software package for algebraic, geometric and combinatorial problems on linear spaces, https://4ti2.github.io.
[2] Ariès, F. and Senoussi, R., An implicitization algorithm for rational surfaces with no base points, J. Symb. Comput.31 (2001) 357-365. · Zbl 0981.14030
[3] Adkins, W., Hoffman, J. W. and Wang, H., Equations of parametric surfaces with base points via syzygies, J. Symb. Comput.39 (2005) 73-101. · Zbl 1120.14051
[4] Biase, F. D. and Urbanke, R., An algorithm to calculate the kernel of certain polynomial ring homomorphisms, Exp. Math.4 (1995) 227-234. · Zbl 0860.68062
[5] Bayer, D., Peeva, I. and Sturmfels, B., Monomial resolutions, Math. Res. Lett.5 (1998) 31-46. · Zbl 0909.13010
[6] Bayer, D. and Sturmfels, B., Cellular resolutions of monomial modules, J. Reine Angew. Math.502 (1998) 123-140. · Zbl 0909.13011
[7] Bayer, D., Charalambous, H. and Popescu, S., Extremal Betti numbers and applications to monomial ideals, J. Algebra221 (1999) 497-512. · Zbl 0946.13008
[8] Busé, L., Residual resultant over the projective plane and the implicitization problem, in Proc. 2001 Int. Symp. Symbolic and Algebraic Computation (ACM Press, New York, , 2001), pp. 48-55. · Zbl 1356.14057
[9] Busé, L., Cox, D. and D’Andrea, C., Implicitization of surfaces in \(\Bbb P^3\) in the presence of base points, J. Algebra Appl.2 (2003) 189-214. · Zbl 1068.14066
[10] Busé, L., Chardin, M. and Jouanolou, J. P., Torsion of the symmetric algebra and implicitization, Proc. Amer. Math. Soc.137 (2009) 1855-1865. · Zbl 1167.13008
[11] Busé, L., On the equations of the moving curve ideal of a rational algebraic plane curve, J. Algebra321 (2009) 2317-2344. · Zbl 1168.14027
[12] Busé, L. and Chardin, M., Implicitizing rational hypersurfaces using approximation complexes, J. Symb. Comput.40 (2005) 1150-1168. · Zbl 1120.14052
[13] Busé, L., Chardin, M. and Simis, A., Elimination and nonlinear equations of Rees algebras, J. Algebra324 (2010) 1314-1333. · Zbl 1210.13008
[14] Botbol, N., Busé, L. and Chardin, M., Fitting ideals and multiple points of surface parameterizations, J. Algebra420 (2014) 486-508. · Zbl 1317.14084
[15] Cox, D. A., Goldman, R. N. and Zhang, M., On the validity of implicitization by moving quadrics for rational surfaces with no base points, J. Symb. Comput.29 (2000) 419-440. · Zbl 0959.68124
[16] Cox, D. A., Equations of parametric curves and surfaces via syzygies, Contemp. Math.286 (2001) 1-20. · Zbl 1009.68174
[17] Cox, D. A. and Schenck, H., Local complete intersections in \(\Bbb P^2\) and Koszul syzygies, Proc. Amer. Math. Soc.131 (2003) 2007-2014. · Zbl 1075.13006
[18] Cox, D. A., The moving curve ideal and the Rees algebra, Theor. Comput. Sci.392 (2008) 23-36. · Zbl 1170.13004
[19] Cox, D. A., Hoffman, J. W. and Wang, H., Syzygies and the Rees algebra, J. Pure Appl. Algebra212 (2008) 1787-1796. · Zbl 1151.13012
[20] Chardin, M., Powers of ideals and the cohomology of stalks and fibers of morphisms, Algebra Number Theory7 (2013) 1-18. · Zbl 1270.13008
[21] Chardin, M., Powers of ideals: Betti numbers, cohomology and regularity, in Commutative Algebra (Springer, New York, 2013), pp. 317-333. · Zbl 1262.13026
[22] Cox, D. A., Little, J. and O’Shea, D., Ideals, Varieties, and Algorithms, , 4th edn. (Springer, Cham, 2015). · Zbl 1335.13001
[23] Cooper, S., Embree, R., Há, H. and Hoefel, A., Symbolic powers of monomial ideals, Proc. Edinburgh Math. Soc.60 (2017) 39-55. · Zbl 1376.13010
[24] D’Andrea, C., Resultants and moving surfaces, J. Symb. Comput.31 (2001) 585-602. · Zbl 1008.65010
[25] De Loera, J. A., Hoşten, S., Krone, R. and Siverstein, L., Average behavior of minimal free resolutions of monomial ideals, Proc. Amer. Math. Soc.147 (2019) 3239-3257. · Zbl 1420.13029
[26] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-2-0 — A computer algebra system for polynomial computations (2020), http://www.singular.uni-kl.de.
[27] Eisenbud, D., Commutative Algebra, , Vol. 150 (Springer-Verlag, New York, 1995). · Zbl 0819.13001
[28] Eisenbud, D. and Sturmfels, B., Binomial ideals, Duke Math. J.84 (1996) 1-45. · Zbl 0873.13021
[29] Eisenbud, D. and Harris, J., Powers of ideals and fibers of morphisms, Math. Res. Lett.17 (2010) 267-273. · Zbl 1226.13012
[30] Francisco, C. A., Há, H. and Mermin, J., Powers of square-free monomial ideals and combinatorics, in Commutative Algebra, ed. Peeva, I. (Springer, 2013), pp. 373-392. · Zbl 1262.13036
[31] Gasharov, V. and Peeva, I., Binomial free resolutions for normal toric surfaces, Proc. Amer. Math. Soc.127 (1999) 1583-1588. · Zbl 0912.13003
[32] Gasharov, V., Peeva, I. and Welker, V., The lcm-lattice in monomial resolutions, Math. Res. Lett.6 (1999) 521-532. · Zbl 0970.13004
[33] Herzog, J., Simis, A. and Vasconcelos, W., Approximation complexes of blowing-up rings, J. Algebra74 (1982) 466-493. · Zbl 0484.13006
[34] Herzog, J., Simis, A. and Vasconcelos, W., Koszul homology and blowing-up rings, in Commutative Algebra, , Vol. 84 (Dekker, New York, 1983), pp. 79-169. · Zbl 0499.13002
[35] Herzog, J., Simis, A. and Vasconcelos, W., Approximation complexes of blowing-up rings II, J. Algebra82 (1983) 53-83. · Zbl 0515.13018
[36] Hoşten, S. and Sturmfels, B., GRIN: An implementation of Gröbner bases for integer programming, in Integer Programming and Combinatorial Optimization, , Vol. 920 (Springer, Berlin, 1995), pp. 267-276. · Zbl 1508.90036
[37] Hoşten, S. and Shapiro, J., Primary decomposition of lattice basis ideals, J. Symb. Comput.29 (2000) 625-639. · Zbl 0968.13003
[38] Hoffman, J. W. and Wang, H., Castelnuovo-Mumford regularity in biprojective spaces, Adv. Geom.4 (2004) 513-536. · Zbl 1063.13001
[39] Hoffman, J. W. and Wang, H., Defining equations of the Rees algebra of certain parametric surfaces, J. Algebra Appl.9 (2010) 1033-1049. · Zbl 1211.14063
[40] Há, H. and Woodroofe, R., Results on the regularity of square-free monomial ideals, Adv. Appl. Math.58 (2014) 21-36. · Zbl 1299.13017
[41] Hemmecke, R. and Malkin, P. N., Computing generating sets of lattice ideals and Markov bases of lattices, J. Symb. Comput.44 (2009) 1463-1476. · Zbl 1200.13048
[42] La Scala, R. and Stillman, M., Strategies for computing minimal free resolutions, J. Symb. Comput.26 (1998) 409-431. · Zbl 1034.68716
[43] Lyubeznik, G., A new explicit finite free resolution of ideals generated by monomials in an R-sequence, J. Pure Appl. Algebra51 (1998) 193-195. · Zbl 0652.13012
[44] Lai, Y., Chen, F. and Shi, X., Implicitizing rational surfaces without base points by moving planes and moving quadrics, Comput. Aided Geom. Des.70 (2019) 1-15. · Zbl 1465.65016
[45] Miller, E. and Sturmfels, B., Combinatorial Commutative Algebra, , Vol. 227 (Springer-Verlag, New York, 2005). · Zbl 1090.13001
[46] Pottier, L., Minimal solutions of linear diophantine systems: Bounds and algorithms, in International Conference on Rewriting Techniques and Applications (Springer, 1991), pp. 162-173. · Zbl 1503.11152
[47] Peeva, I. and Sturmfels, B., Syzygies of codimension 2 lattice ideals, Math. Z.229 (1998) 163-194. · Zbl 0918.13006
[48] Peeva, I. and Sturmfels, B., Generic lattice ideals, J. Amer. Math. Soc.11 (1998) 363-373. · Zbl 0905.13005
[49] Sederberg, T. and Chen, F., Implicitization using moving curves and surfaces, in Proc. 22nd Ann. Conf. Comput. Graphics and Interactive Techniques, SIGGRAPH’95 (ACM Press, New York, , 1995), pp. 301-308.
[50] Sturmfels, B., The co-Scarf resolution, in Commutative Algebra, Algebraic Geometry, and Computational Methods, ed. Eisenbud, D. (Springer, Singapore, 1999), pp. 315-320. · Zbl 0978.13018
[51] Simis, A. and Vasconcelos, W., Rees algebras of modules, Proc. Amer. Math. Soc.87 (2003) 610-646. · Zbl 1099.13008
[52] Thomas, R., A geometric Buchberger algorithm for integer programming, Math. Oper. Res.20 (1995) 864-884. · Zbl 0846.90079
[53] Vasconcelos, W., Integral closure, Rees Algebras, Multiplicities, Algorithms, (Springer-Verlag, Berlin, 2005). · Zbl 1082.13006
[54] Yanagawa, K., \( F_{\operatorname{\Delta}}\) type free resolutions of monomial ideals, Proc. Amer. Math. Soc.127 (1999) 377-383. · Zbl 0910.13007
[55] Zheng, J., Sederberg, T., Chionh, E. and Cox, D., Implicitizing rational surfaces with base points using the method of moving surfaces, Topics in algebraic geometry and geometric modeling, Contemp. Math.334 (2003) 151-168. · Zbl 1058.14074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.