×

Dynamics of Rossby solitary waves with time-dependent mean flow via Euler eigenvalue model. (English) Zbl 1506.76203

Summary: The investigation on the fluctuations of nonlinear Rossby waves is of great importance for the understanding of atmospheric or oceanic motions. The present paper mainly deals with the well-known atmospheric blocking phenomena through the nonlinear Rossby wave theories and the corresponding methods. Based on the equivalent barotropic potential vorticity model in the \(\beta \)-plane approximation underlying a weak time-dependent mean flow, the multiscale technique and perturbation approximated methods are adopted to derive a new forced Korteweg-de Vries model equation with varied coefficients (vfKdV) for the Rossby wave amplitude. For a further analytical treatment of the obtained model problem, a special kind of basic flow is adopted. The evolution processes of atmospheric blocking are well discussed according to the given parameters according to the dipole blocking theory. The effects of some physical factors, especially the mean flow, on the propagation of atmospheric blocking are analyzed.

MSC:

76U65 Rossby waves
76B25 Solitary waves for incompressible inviscid fluids
Full Text: DOI

References:

[1] Pedlosky, J., Geophysical Fluid Dynamics (1987), New York: Springer-Verlag, New York · Zbl 0713.76005 · doi:10.1007/978-1-4612-4650-3
[2] Rossby, C. G., Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action, Journal of Marine Research, 2, 1, 38-55 (1939) · doi:10.1357/002224039806649023
[3] Charney, J. G., On the scale of atmospheric motions, Geofysislw Publikasjoner, 17, 2, 251-265 (1948)
[4] Berggren, R.; Bolin, B.; Rossby, C. G., An aerological study of zonal motion, its perturbations and break-down, Tellus, 1, 2, 14-37 (1949) · doi:10.3402/tellusa.v1i2.8501
[5] Long, R. R., Solitary waves in the westerlies, Journal of the Atmospheric Sciences, 21, 2, 197-200 (1949) · doi:10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2
[6] Redekopp, L. G.; Weidman, P. D., Solitary Rossby waves in zonal shear flows and their interactions, Journal of the Atmospheric Sciences, 35, 5, 790-804 (1978) · doi:10.1175/1520-0469(1978)035<0790:SRWIZS>2.0.CO;2
[7] Charney, J. G.; Devore, J. G., Multiple flow equilibria in the atmosphere and blocking, Journal of the Atmospheric Sciences, 36, 7, 1205-1216 (1979) · doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
[8] Mcwilliams, J. C., An application of equivalent modons to atmospheric blocking, Dynamics of Atmospheres and Oceans, 5, 1, 43-66 (1980) · doi:10.1016/0377-0265(80)90010-X
[9] Shutts, G. J., The propagation of eddies in diffluent jetstreams: eddy vorticity forcing of ‘blocking’ flow fields, Quarterly Journal of the Royal Meteorological Society, 109, 462, 737-761 (1983)
[10] Malguzzi, P.; Malanotte-Rizzoli, P., Nonlinear stationary Rossby waves on nonuniform zonal winds and atmospheric blocking, part I: the analytica theory, Journal of the Atmospheric Sciences, 41, 17, 2620-2628 (1984) · doi:10.1175/1520-0469(1984)041<2620:NSRWON>2.0.CO;2
[11] Luo, D. H.; Ji, L. R., Observational study of dipole blocking in the atmosphere (in Chinese), Chinese Journal of Atmospheric Sciences, 15, 4, 52-57 (1991)
[12] Luo, D. H., Solitary Rossby waves in the rotating atmosphere and dipole blocking (in Chinese), Acta Meteorologica Sinica, 49, 4, 548-552 (1991)
[13] Luo, D. H., Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies, Dynamics of Atmospheres and Oceans, 32, 1, 27-74 (2000) · doi:10.1016/S0377-0265(99)00018-4
[14] Luo, D. H., Abarotropic envelope Rossby soliton model for block-eddy interaction, part I: effect of topography, Journal of the Atmospheric Sciences, 62, 1, 5-21 (2005) · doi:10.1175/1186.1
[15] Luo, D. H.; Zhang, W. Q.; Zhong, L. H.; Dai, A. G., A nonlinear theory of atmospheric blocking: a potential vorticity gradient view, Journal of the Atmospheric Sciences, 76, 8, 2399-2427 (2019) · doi:10.1175/JAS-D-18-0324.1
[16] Lu, C. N.; Fu, C.; Yang, H. W., Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Applied Mathematics and Computation, 327, 104-116 (2018) · Zbl 1426.76721 · doi:10.1016/j.amc.2018.01.018
[17] Zhang, R. G.; Yang, L. G., Nonlinear Rossby waves in zonally varying flow under generalized beta approximation, Dynamics of Atmospheres and Oceans, 85, 16-27 (2019) · doi:10.1016/j.dynatmoce.2018.11.001
[18] Wang, J.; Zhang, R. G.; Yang, L. G., Solitary waves of nonlinear barotropic-baroclinic coherent structures, Physics of Fluids, 32, 9, 096604 (2020) · doi:10.1063/5.0025167
[19] Wang, J.; Zhang, R. G.; Yang, L. G., A Gardner evolution equation for topographic Rossby waves and its mechanical analysis, Applied Mathematics and Computation, 385, 125426 (2020) · Zbl 1508.76025 · doi:10.1016/j.amc.2020.125426
[20] Zhang, J. Q.; Zhang, R. G.; Yang, L. G.; Liu, Q. S.; Chen, L. G., Coherent structures of nonlinear barotropic-baroclinic interaction in unequal depth two-layer model, Applied Mathematics and Computation, 408, 126347 (2021) · Zbl 1510.86009 · doi:10.1016/j.amc.2021.126347
[21] Ciro, D.; Raphaldini, B.; Raupp, C. F M., Topography-induced locking of drifting Rossby-Haurwitz waves, Physics of Fluids, 32, 046601 (2020) · doi:10.1063/1.5142570
[22] Shi, Y. L.; Yang, D. Z.; Feng, X. R.; Qi, J. F.; Yang, H. W.; Yin, B. S., One possible mechanism for eddy distribution in zonal current with meridional shear, Scientific Reports, 8, 1, 10106 (2018) · doi:10.1038/s41598-018-28465-z
[23] Shi, Y. L.; Yang, D. Z.; Yin, B. S., The effect of background flow shear on the topographic Rossby wave, Journal of Oceanography, 76, 307-315 (2020) · doi:10.1007/s10872-020-00546-6
[24] Solomon, T. H.; Holloway, W. J.; Swinney, H. L., Shear flow instabilities and Rossby waves in barotropic flow in a rotating annulus, Physics of Fluids A: Fluid Dynamics, 5, 8, 1971-1982 (1993) · doi:10.1063/1.858824
[25] Hodyss, D.; Nolan, D. S., The Rossby-inertia-buoyancy instability in baroclinic vortices, Physics of Fluids, 20, 9, 096602 (2008) · Zbl 1182.76324 · doi:10.1063/1.2980354
[26] Kalashnik, M. V.; Chkhetiani, O. G.; Kurgansky, M. V., Discrete SQG models with two boundaries and baroclinic instability of jet flows, Physics of Fluids, 33, 076608 (2021) · doi:10.1063/5.0056785
[27] Zhang, X. J.; Zhang, H. X.; Yang, Y. Y.; Song, J., Effect of quadric shear basic zonal flows and topography on baroclinic instability, Tellus A: Dynamic Meteorology and Oceanography, 72, 1, 1-9 (2020) · doi:10.1080/16000870.2020.1843330
[28] Yang, Y. Y.; Song, J., On the generalized eigenvalue problem of Rossby waves vertical velocity under the condition of zonal mean flow and topography, Applied Mathematics Letters, 121, 107485 (2021) · Zbl 1471.86005 · doi:10.1016/j.aml.2021.107485
[29] Berloff, P. S.; Mcwilliams, J. C., Quasigeostrophic dynamics of the western boundary current, Journal of Physical Oceanography, 29, 10, 2607-2634 (1998) · doi:10.1175/1520-0485(1999)029<2607:QDOTWB>2.0.CO;2
[30] Poulin, F. J., The Instability of Time-dependent Jets (2002), Massachusetts: Massachusetts Institute of Technology, Massachusetts
[31] Huang, F.; Tang, X. Y.; Lou, S. Y.; Lu, C. H., Evolution of dipole-type blocking life cycles: analytical diagnoses and observations, Journal of the Atmospheric Sciences, 64, 1, 52-73 (2007) · doi:10.1175/JAS3819.1
[32] Radko, T., Instabilities of a time-dependent shear flow, Journal of Physical Oceanography, 49, 9, 2377-2392 (2019) · doi:10.1175/JPO-D-19-0067.1
[33] Radko, T., Barotropic instability of a time-dependent parallel flow, Journal of Fluid Mechanics, 922, A11 (2021) · Zbl 1493.76048 · doi:10.1017/jfm.2021.544
[34] Yan, X. M.; Kang, D. J.; Curchitser, E. N.; Pang, C. G., Energetics of dddy-mean flow interactions along the western boundary currents in the north pacific, Journal of Physical Oceanography, 49, 789-810 (2019) · doi:10.1175/JPO-D-18-0201.1
[35] Natarov, A.; Richards, K. J.; Mccreary, J. P., Two-dimensional instabilities of time-dependent zonal flows: linear shear, Journal of Fluid Mechanics, 599, 29-50 (2008) · Zbl 1151.76485 · doi:10.1017/S0022112007009342
[36] Peng, K.; Rotunno, R.; Bryan, G. H., Evaluation of a time-dependent model for the intensification of tropical cyclones, Journal of the Atmospheric Sciences, 75, 6, 2125-2138 (2018) · doi:10.1175/JAS-D-17-0382.1
[37] Fan, E. G., Connections among homogeneous balance method, Weiss-Tabor-Carnevale method and Clarkson-Kruskal method (in Chinese), Acta Physica Sinica, 49, 8, 1409-1412 (2000) · Zbl 1202.37099 · doi:10.7498/aps.49.1409
[38] Shen, S. F., Clarkson-Kruskal direct dimilarity approach for differential-difference equations, Communications in Theoretical Physics, 44, 12, 964-966 (2005) · doi:10.1088/6102/44/6/964
[39] Li, X. Z.; Zhang, J. L.; Wang, M. L., Solving KdV eauation with variable coefficients by using F-expansion method (in Chinese), Journal of Yunnan University (Natural Sciences Edition), 28, 3, 222-226 (2006)
[40] Shen, S. J., Varied solitary wave solutions of KdV equation with variable coefficients (in Chinese), Journal of Shaoxing University (Natural Sciences), 32, 2, 12-16 (2012)
[41] Liu, S. S.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations (in Chinese), Acta Physica Sinica, 51, 9, 1923-1926 (2002) · Zbl 1202.35056
[42] Fu, Z. T.; Liu, S. D.; Liu, S. S.; Zhao, Q., New exact solution to KdV equations with variable coefficients or forcing, Applied Mathematics and Mechanics (English Edition), 25, 1, 73-79 (2004) · Zbl 1061.35109 · doi:10.1007/BF02437295
[43] Luo, D. H., Solitary Rossby waves with the Bata parameter and dipole blocking (in Chinese), Quarterly Journal of Applied Meteorolog, 6, 2, 220-227 (1995)
[44] Luo, D. H.; Xu, H., The influence of background westerly wind on the formation of blocking by localized synoptic-scale eddies (in Chinese), Journal of Ocean University of Qingdao (Natural Sciences Edition), 32, 4, 501-510 (2002)
[45] Wu, H., Comparison of the vorticity and divergence in two common meteorological coordinate systems (in Chinese), Meteorological Monthly, 47, 9, 1156-1161 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.