×

Isogeometric schemes in rarefied gas dynamics context. (English) Zbl 1506.76155

Summary: Geometrical complexity is typical of missile and reentry systems, small-scale devices with intrinsic milli-to-micro scale features, or in general topology-rich systems. Additionally, at high altitudes or at microscales, when the flow becomes rarefied, the conventional continuum/macroscopic equations produce unsatisfactory results. A microscopic/kinetic description becomes necessary. In this work, we introduce isogeometric (IG) kinetic schemes (KS) for the full Boltzmann equation and related kinetic models (Bhatnagar-Gross-Krook (BGK), Ellipsoidal statistical BGK, and Shakov). These schemes are specifically aimed for modeling flows in topologically complex “multi-patch” geometries such as those constructed using computer-aided geometric design tools; high order accurate; unconditionally time-stable (as per our tests) following generalized-\(\alpha\) method; non-linearly stable following streamlined upwind Petrov-Galerkin method applied at every patch level with patch-to-patch coupling enforced either strongly by constraining the interface using single degree of freedom, or weakly using numerical fluxes as in discontinuous Galerkin (useful because the underlying system is first order in space); amenable to nearly-linear parallel efficiency owing to the six-dimensional nature of Boltzmann equation, wherein the convection and collision can be, respectively, performed simultaneously over velocity and physical spaces. In particular, since the surface representation is exact in IG, when surface properties are to be computed, which is often the case in aerodynamic applications, these schemes perform well. A series of verification tests for 1D/2D/3D-3V initial-boundary value and boundary-value flow problems, involving momentum, energy, and diffusive transport, including problems posed on non-conforming domains/patches, is performed to illustrate the stability and accuracy of the proposed method.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35Q20 Boltzmann equations
65D07 Numerical computation using splines
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
65Y05 Parallel numerical computation
82C40 Kinetic theory of gases in time-dependent statistical mechanics
82D05 Statistical mechanics of gases
Full Text: DOI

References:

[1] Chen, J. H.; Choudhary, A.; De Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W.-K.; Ma, K.-L.; Mellor-Crummey, J.; Podhorszki, N., Terascale direct numerical simulations of turbulent combustion using S3D, Comput. Sci. Discov., 2, 1, Article 015001 pp. (2009)
[2] Bardos, C.; Golse, F.; Levermore, D., Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63, 1-2, 323-344 (1991)
[3] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Clarendon
[4] Wagner, W., A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation, J. Stat. Phys., 66, 3-4, 1011-1044 (1992) · Zbl 0899.76312
[5] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511 (1954) · Zbl 0055.23609
[6] Holway Jr, L. H., New statistical models for kinetic theory: methods of construction, Phys. Fluids (1958-1988), 9, 9, 1658-1673 (1966)
[7] Shakhov, E., Generalization of the Krook kinetic relaxation equation, Fluid Dyn., 3, 5, 95-96 (1968)
[8] Dimarco, G.; Pareschi, L., Numerical methods for kinetic equations, Acta Numer., 23, 369-520 (2014) · Zbl 1398.65260
[9] Gamba, I. M.; Tharkabhushanam, S. H., Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., 228, 6, 2012-2036 (2009) · Zbl 1159.82320
[10] Munafò, A.; Haack, J. R.; Gamba, I. M.; Magin, T. E., A spectral-Lagrangian Boltzmann solver for a multi-energy level gas, J. Comput. Phys., 264, 152-176 (2014) · Zbl 1349.76720
[11] Platkowski, T.; Illner, R., Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory, SIAM Rev., 30, 2, 213-255 (1988) · Zbl 0668.76087
[12] Goldstein, D.; Sturtevant, B.; Broadwell, J., Investigations of the motion of discrete-velocity gases, Progr. Astronaut. Aeronaut., 117, 100-117 (1989)
[13] Rogier, F.; Schneider, J., A direct method for solving the Boltzmann equation, Transp. Theory Stat. Phys., 23, 1-3, 313-338 (1994) · Zbl 0811.76050
[14] Tan, Z.; Varghese, P. L., The \(\delta-\varepsilon\) method for the Boltzmann equation, J. Comput. Phys., 110, 2, 327-340 (1994) · Zbl 0797.65114
[15] Vasiljevitch Bobylev, A.; Palczewski, A.; Schneider, J., On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. 1, 320, 5, 639-644 (1995) · Zbl 0834.76078
[16] Buet, C., A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Transp. Theory Stat. Phys., 25, 1, 33-60 (1996) · Zbl 0857.76079
[17] Tcheremissine, F., Solution to the Boltzmann kinetic equation for high-speed flows, Comput. Math. Math. Phys., 46, 2, 315-329 (2006) · Zbl 1210.76149
[18] Aristov, V. V., Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Vol. 60 (2012), Springer Science & Business Media
[19] Pareschi, L.; Perthame, B., A fourier spectral method for homogeneous Boltzmann equations, Transp. Theory Stat. Phys., 25, 3-5, 369-382 (1996) · Zbl 0870.76074
[20] Pareschi, L.; Russo, G., Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal., 37, 4, 1217-1245 (2000) · Zbl 1049.76055
[21] Pareschi, L.; Russo, G.; Toscani, G., Fast spectral methods for the Fokker-Planck-Landau collision operator, J. Comput. Phys., 165, 1, 216-236 (2000) · Zbl 1052.82545
[22] Mouhot, C.; Pareschi, L., Fast algorithms for computing the Boltzmann collision operator, Math. Comput., 75, 256, 1833-1852 (2006) · Zbl 1105.76043
[23] Gamba, I. M.; Tharkabhushanam, S. H., Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation, J. Comput. Math., 430-460 (2010) · Zbl 1228.76138
[24] Hu, J.; Ying, L., A fast spectral algorithm for the quantum Boltzmann collision operator, Commun. Math. Sci., 10, 3, 989-999 (2012) · Zbl 1260.82068
[25] Haack, J., A hybrid OpenMP and MPI implementation of a conservative spectral method for the Boltzmann equation (2013), arXiv preprint arXiv:1301.4195
[26] Gamba, I.; Haack, J.; Hauck, C.; Hu, J., A fast spectral method for the Boltzmann collision operator with general collision kernels, SIAM J. Sci. Comput., 39, B658-B674 (2017) · Zbl 1394.35310
[27] Jaiswal, S.; Alexeenko, A.; Hu, J., A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels, J. Comput. Phys., 378, 178-208 (2019) · Zbl 1416.76113
[28] Jaiswal, S.; Alexeenko, A. A.; Hu, J., A discontinuous Galerkin fast spectral method for the multi-species Boltzmann equation, Comput. Methods Appl. Mech. Engrg., 352, 56-84 (2019) · Zbl 1441.76108
[29] Filbet, F.; Mouhot, C.; Pareschi, L., Solving the Boltzmann equation in N log2 N, SIAM J. Sci. Comput., 28, 3, 1029-1053 (2006) · Zbl 1174.82012
[30] Jaiswal, S.; Hu, J.; Alexeenko, A. A., Fast deterministic solution of the full Boltzmann equation on graphics processing units, (AIP Conference Proceedings, Vol. 2132 (2019), AIP Publishing LLC), Article 060001 pp.
[31] S. Jaiswal, J. Hu, J.K. Brillon, A.A. Alexeenko, A discontinuous Galerkin fast spectral method for multi-species full Boltzmann on streaming multi-processors, in: Proceedings of the Platform for Advanced Scientific Computing Conference, 2019, pp. 1-9.
[32] Ji, X.; Zhao, F.; Shyy, W.; Xu, K., A HWENO reconstruction based high-order compact gas-kinetic scheme on unstructured mesh, J. Comput. Phys., Article 109367 pp. (2020) · Zbl 1436.76038
[33] Hu, Z.; Cai, Z., Burnett spectral method for high-speed rarefied gas flows, SIAM J. Sci. Comput., 42, 5, B1193-B1226 (2020) · Zbl 1451.76090
[34] Boscheri, W.; Dimarco, G., High order central WENO-implicit-explicit runge kutta schemes for the BGK model on general polygonal meshes, J. Comput. Phys., 422, Article 109766 pp. (2020) · Zbl 07508389
[35] Sone, Y., Kinetic Theory and Fluid Dynamics (2012), Springer Science & Business Media
[36] Xu, K., A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys., 171, 1, 289-335 (2001) · Zbl 1058.76056
[37] Filbet, F.; Russo, G., High order numerical methods for the space non-homogeneous Boltzmann equation, J. Comput. Phys., 186, 2, 457-480 (2003) · Zbl 1034.82052
[38] Kolobov, V.; Arslanbekov, R.; Aristov, V. V.; Frolova, A.; Zabelok, S. A., Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys., 223, 2, 589-608 (2007) · Zbl 1183.76851
[39] Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E.; Mavriplis, D., CFD vision 2030 study: a path to revolutionary computational aerosciences (2014)
[40] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[41] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263 (2010) · Zbl 1227.74123
[42] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275 (2010) · Zbl 1227.74125
[43] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49-52, 3554-3567 (2011) · Zbl 1239.65013
[44] Schillinger, D.; Dede, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116-150 (2012) · Zbl 1348.65055
[45] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170-232 (2013) · Zbl 1286.65174
[46] Hughes, T. J.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 2, 173-189 (1989) · Zbl 0697.76100
[47] Karniadakis, G.; Sherwin, S., Spectral/Hp Element Methods for CFD (1999), Oxford University Press · Zbl 0954.76001
[48] Hughes, T. J.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative, J. Comput. Phys., 163, 2, 467-488 (2000) · Zbl 0969.65104
[49] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 1, 30-44 (1989) · Zbl 0667.65079
[50] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comput., 54, 189, 107-129 (1990) · Zbl 0685.65086
[51] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[52] Toshniwal, D.; Hughes, T. J., Isogeometric discrete differential forms: Non-uniform degrees, Bézier extraction, polar splines and flows on surfaces, Comput. Methods Appl. Mech. Engrg., 376, Article 113576 pp. (2021) · Zbl 1506.65230
[53] Ruess, M.; Schillinger, D.; Oezcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[54] Langer, U.; Mantzaflaris, A.; Moore, S. E.; Toulopoulos, I., Multipatch discontinuous Galerkin isogeometric analysis, (Isogeometric Analysis and Applications 2014 (2015), Springer), 1-32 · Zbl 1334.65194
[55] Auricchio, F.; Da Veiga, L. B.; Hughes, T. J.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249, 2-14 (2012) · Zbl 1348.74305
[56] T.J. Hughes, A. Brooks, A multi-dimensioal upwind scheme with no crosswind diffusion, in: Finite Element Methods for Convection Dominated Flows, ASME Winter Annual Meeting, T.J.R. Hughes (Ed.), New York, USA, Vol. 34, 2017, pp. 19-35. · Zbl 0423.76067
[57] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 1, 129-155 (2005) · Zbl 1203.65111
[58] Jin, S.; Xin, Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun. Pure Appl. Math., 48, 3, 235-276 (1995) · Zbl 0826.65078
[59] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[60] Guermond, J.-L.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230, 11, 4248-4267 (2011) · Zbl 1220.65134
[61] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Thomas Jr, A., Spectral Methods in Fluid Dynamics (2012), Springer Science & Business Media
[62] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (2007), Springer Science & Business Media · Zbl 1121.76001
[63] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, Vol. 159 (2013), Springer Science & Business Media
[64] Evans, J. A.; Bazilevs, Y.; Babuška, I.; Hughes, T. J., N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1726-1741 (2009) · Zbl 1227.65093
[65] Edwards, H. C.; Trott, C. R.; Sunderland, D., Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput., 74, 12, 3202-3216 (2014)
[66] Filbet, F.; Jin, S., A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229, 20, 7625-7648 (2010) · Zbl 1202.82066
[67] Dimarco, G.; Pareschi, L., Exponential Runge-Kutta methods for stiff kinetic equations, SIAM J. Numer. Anal., 49, 5, 2057-2077 (2011) · Zbl 1298.76150
[68] Albi, G.; Dimarco, G.; Pareschi, L., Implicit-explicit multistep methods for hyperbolic systems with multiscale relaxation, SIAM J. Sci. Comput., 42, 4, A2402-A2435 (2020) · Zbl 1455.65126
[69] Hu, J.; Shu, R.; Zhang, X., Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation, SIAM J. Numer. Anal., 56, 2, 942-973 (2018) · Zbl 1388.82023
[70] Gamba, I. M.; Jin, S.; Liu, L., Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations, J. Comput. Phys., 382, 264-290 (2019) · Zbl 1451.76112
[71] Degond, P., Asymptotic-preserving schemes for fluid models of plasmas (2011), arXiv preprint arXiv:1104.1869 · Zbl 1308.76182
[72] Jin, S.; Yan, B., A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation, J. Comput. Phys., 230, 17, 6420-6437 (2011) · Zbl 1408.76594
[73] Crouseilles, N.; Lemou, M., An asymptotic preserving scheme based on a micro-macro decomposition for collisional vlasov equations: diffusion and high-field scaling limits, Kinet. Relat. Models, 4, 2, 441 (2011) · Zbl 1222.82077
[74] Jin, S.; Li, Q., A BGK-penalization-based asymptotic-preserving scheme for the multispecies Boltzmann equation, Numer. Methods Partial Differential Equations, 29, 3, 1056-1080 (2013) · Zbl 1268.82030
[75] Li, Q., Modeling and Computational Methods for Multi-scale Quantum Dynamics and Kinetic Equations (2013), The University of Wisconsin-Madison, (Ph.D. thesis)
[76] Li, Q.; Pareschi, L., Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy, J. Comput. Phys., 259, 402-420 (2014) · Zbl 1349.76707
[77] Filbet, F.; Hu, J.; Jin, S., A numerical scheme for the quantum Boltzmann equation with stiff collision terms, ESAIM: Math. Model. Numer. Anal.-Modél. Math. Anal. Numér., 46, 2, 443-463 (2012) · Zbl 1277.82046
[78] Jin, S.; Wang, L., Asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime, SIAM J. Sci. Comput., 35, 3, B799-B819 (2013) · Zbl 1277.82047
[79] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 3, 474-506 (2019) · Zbl 1422.65080
[80] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys., 162, 2, 429-466 (2000) · Zbl 0984.76070
[81] Titarev, V.; Dumbser, M.; Utyuzhnikov, S., Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions, J. Comput. Phys., 256, 17-33 (2014) · Zbl 1349.76741
[82] Lemou, M.; Mieussens, L., Implicit schemes for the Fokker-Planck-Landau equation, SIAM J. Sci. Comput., 27, 3, 809-830 (2005) · Zbl 1096.82015
[83] Taitano, W. T.; Chacón, L.; Simakov, A.; Molvig, K., A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation, J. Comput. Phys., 297, 357-380 (2015) · Zbl 1349.65384
[84] Qin, T.; Shu, C.-W., Implicit positivity-preserving high-order discontinuous Galerkin methods for conservation laws, SIAM J. Sci. Comput., 40, 1, A81-A107 (2018) · Zbl 1380.65285
[85] Li, M.; Cheng, Y.; Shen, J.; Zhang, X., A bound-preserving high order scheme for variable density incompressible Navier-Stokes equations, J. Comput. Phys., 425, Article 109906 pp. (2021) · Zbl 07508502
[86] Jansen, K. E.; Whiting, C. H.; Hulbert, G. M., A generalized-\( \alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 3-4, 305-319 (2000) · Zbl 0973.76048
[87] DiPerna, R. J.; Lions, P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math., 321-366 (1989) · Zbl 0698.45010
[88] Villani, C., A review of mathematical topics in collisional kinetic theory, Handb. Math. Fluid Dyn., 1, 71-305, 3-8 (2002) · Zbl 1170.82369
[89] Auricchio, F.; Da Veiga, L. B.; Hughes, T.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[90] Piegl, L.; Tiller, W., The NURBS Book (2012), Springer Science & Business Media
[91] Orszag, S. A., Spectral methods for problems in complex geometrics, (Numerical Methods for Partial Differential Equations (1979), Elsevier), 273-305 · Zbl 0448.65072
[92] Mouhot, C.; Villani, C., On landau damping, Acta Math., 207, 1, 29-201 (2011) · Zbl 1239.82017
[93] Bennoune, M.; Lemou, M.; Mieussens, L., Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., 227, 8, 3781-3803 (2008) · Zbl 1317.76058
[94] Zhu, Y.; Zhong, C.; Xu, K., Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys., 315, 16-38 (2016) · Zbl 1349.76791
[95] Jin, S.; Shi, Y., A micro-macro decomposition-based asymptotic-preserving scheme for the multispecies Boltzmann equation, SIAM J. Sci. Comput., 31, 6, 4580-4606 (2010) · Zbl 1323.76099
[96] Pieraccini, S.; Puppo, G., Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32, 1, 1-28 (2007) · Zbl 1115.76057
[97] Filbet, F.; Jin, S., An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46, 2, 204-224 (2011) · Zbl 1433.82022
[98] Xiong, T.; Jang, J.; Li, F.; Qiu, J.-M., High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation, J. Comput. Phys., 284, 70-94 (2015) · Zbl 1351.76088
[99] Harris, S., An Introduction to the Theory of the Boltzmann Equation (2004), Courier Corporation
[100] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[101] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J., Isogeometric finite element data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 1-5, 15-47 (2011) · Zbl 1242.74097
[102] Beer, G.; Bordas, S., Isogeometric Methods for Numerical Simulation, Vol. 240 (2015), Springer · Zbl 1317.74004
[103] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[104] Hughes, T. J.; Scovazzi, G.; Franca, L. P., Multiscale and stabilized methods, (Encyclopedia of Computational Mechanics Second Edition (2018), Wiley Online Library), 1-64
[105] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Internat. J. Numer. Methods Fluids, 43, 5, 555-575 (2003) · Zbl 1032.76605
[106] Bazilevs, Y.; Hughes, T. J., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids, 36, 1, 12-26 (2007) · Zbl 1115.76040
[107] Ruess, M.; Schillinger, D.; Bazilevs, Y.; Varduhn, V.; Rank, E., Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Internat. J. Numer. Methods Engrg., 95, 10, 811-846 (2013) · Zbl 1352.65643
[108] Baumann, C. E.; Oden, J. T., A discontinuous hp finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 175, 3-4, 311-341 (1999) · Zbl 0924.76051
[109] Johnson, C.; Navert, U.; Pitkaranta, J., Finite element methods for linear hyperbolic problems, CMAME, 45, 285-312 (1984) · Zbl 0526.76087
[110] Mavriplis, C., Nonconforming Discretizations and a Posteriori Error Estimators for Adaptive Spectral Element Techniques (1989), Massachusetts Institute of Technology, (Ph.D. thesis)
[111] Funaro, D.; Pontrelli, G., Spline approximation of advection-diffusion problems using upwind type collocation nodes, J. Comput. Appl. Math., 110, 1, 141-153 (1999) · Zbl 0938.65100
[112] Balay, S., PETSc web page (2019), https://www.mcs.anl.gov/petsc
[113] Taitano, W.; Chacon, L.; Simakov, A. N., An adaptive, conservative 0D-2V multispecies Rosenbluth-Fokker-Planck solver for arbitrarily disparate mass and temperature regimes, J. Comput. Phys., 318, 391-420 (2016) · Zbl 1349.76393
[114] Degond, P.; Lucquin-Desreux, B., The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Methods Appl. Sci., 6, 405-436 (1996) · Zbl 0853.76079
[115] Clarke, P.; Varghese, P.; Goldstein, D., Discrete velocity computations with stochastic variance reduction of the Boltzmann equation for gas mixtures, (AIP Conference Proceedings, Vol. 1628 (2014), AIP), 1032-1039
[116] Gamba, I. M.; Jin, S.; Liu, L., Asymptotic-preserving schemes for two-species binary collisional kinetic system with disparate masses I: time discretization and asymptotic analysis (2018), arXiv preprint arXiv:1810.11445
[117] Gallis, M. A.; Torczynski, J. R.; Plimpton, S. J.; Rader, D. J.; Koehler, T.; Fan, J., Direct simulation Monte Carlo: The quest for speed, (AIP Conference Proceedings, Vol. 1628 (2014), AIP), 27-36
[118] Hadjiconstantinou, N. G., Oscillatory shear-driven gas flows in the transition and free-molecular-flow regimes, Phys. Fluids, 17, 10, Article 100611 pp. (2005) · Zbl 1187.76199
[119] Filbet, F., On deterministic approximation of the Boltzmann equation in a bounded domain, Multiscale Model. Simul., 10, 3, 792-817 (2012) · Zbl 1262.76089
[120] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 1-31 (1978) · Zbl 0387.76063
[121] Xu, K.; Huang, J.-C., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229, 20, 7747-7764 (2010) · Zbl 1276.76057
[122] Greenshields, C. J.; Weller, H. G.; Gasparini, L.; Reese, J. M., Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows, Int. J. Numer. Methods Fluids, 63, 1, 1-21 (2010) · Zbl 1425.76163
[123] Gallis, M.; Rader, D.; Torczynski, J., Calculations of the near-wall thermophoretic force in rarefied gas flow, Phys. Fluids, 14, 12, 4290-4301 (2002) · Zbl 1185.76136
[124] Ohwada, T., Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules, Phys. Fluids A, 5, 1, 217-234 (1993) · Zbl 0768.76027
[125] Ghia, U.; Ghia, K. N.; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[126] Remacle, J.-F.; Flaherty, J. E.; Shephard, M. S., An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev., 45, 1, 53-72 (2003) · Zbl 1127.65323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.