×

Subharmonic eigenvalue orbits in the spectrum of pulsating Poiseuille flow. (English) Zbl 1506.76037

Summary: Spectral degeneracies where eigenvalues and eigenvectors simultaneously coalesce, also known as exceptional points, are a natural consequence of the strong non-normality of the Orr-Sommerfeld operator describing the evolution of infinitesimal disturbances in parallel shear flows. While the resonances associated with these points give rise to algebraic growth, the development of non-modal stability theory exploiting specific perturbation structures with much larger potential for transient energy growth has led to waning interest in spectral degeneracies. The appearance of subharmonic eigenvalue orbits, recently discovered in the periodic spectrum of pulsating Poiseuille flow, can be traced back to the coalescence of eigenvalues at exceptional points. We present a thorough analysis of the spectral properties of the linear operator to identify exceptional points and accurately map the prevalence of subharmonic eigenvalue orbits for a large range of pulsation amplitudes and frequencies. This information is then combined with solutions of the linear initial value problem to analyse the impact of the appearance of these orbits on the temporal evolution of linear disturbances in pulsating Poiseuille flow. The periodic amplification phases are shown to be heralded by repeated non-normal growth bursts that are intensified by the formation of subharmonic orbits involving the leading eigenvalues. These bursts are associated with the change of alignment of the perturbation from the decaying towards the amplified branch of the subharmonic eigenvalue orbits in a so-called branch transition process.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Babaee, H., Farazmand, M., Haller, G. & Sapsis, T.P.2017Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents. Chaos27 (6), 063103. · Zbl 1390.37137
[2] Babaee, H. & Sapsis, T.P.2016A minimization principle for the description of modes associated with finite-time instabilities. Proc. R. Soc. Lond. A472, 20150779. · Zbl 1371.34064
[3] Benney, D.J. & Rosenblat, S.1964Stability of spatially varying and time-dependent flows. Phys. Fluids7 (8), 1385-1386.
[4] Betchov, R. & Criminale, W.O.1966Spatial instability of the inviscid jet and wake. Phys. Fluids9 (2), 359-362.
[5] Blanchard, A. & Sapsis, T.P.2019Analytical description of optimally time-dependent modes for reduced-order modeling of transient instabilites. SIAM J. Appl. Dyn. Syst.18 (2), 1143-1162. · Zbl 1433.70034
[6] Butler, K.M. & Farrell, B.F.1992Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids4 (8), 1637-1650.
[7] Chang, M.-H., Chen, F. & Straughan, B.2006Instability of Poiseuille flow in a fluid overlying a porous layer. J. Fluid Mech.564, 287-303. · Zbl 1100.76022
[8] Davis, S.H.1976The stability of time-periodic flows. Annu. Rev. Fluid Mech.8 (1), 57-74.
[9] Dembowski, C., Gräf, H.-D., Harney, H.L., Heine, A., Heiss, W.D., Rehfeld, H. & Richter, A.2001Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett.86 (5), 787-790.
[10] D’Errico, J.2021 Eigenshuffle, https://www.mathworks.com/matlabcentral/fileexchange/22885-eigenshuffle.
[11] Doppler, J., Mailybaev, A.A., Böhm, J., Kuhl, U., Girschik, A., Libisch, F., Milburn, T.J., Rabl, P., Moiseyev, N. & Rotter, S.2016Dynamically encircling an exceptional point for asymmetric mode switching. Nature537 (7618), 76-79.
[12] Farrell, B.F.1988Optimal excitation of perturbations in viscous shear flow. Phys. Fluids31 (8), 2093-2102.
[13] Gaster, M.1968Growth of disturbances in both space and time. Phys. Fluids11 (4), 723-727.
[14] Gaster, M. & Jordinson, R.1975On the eigenvalues of the Orr-Sommerfeld equation. J. Fluid Mech.72 (1), 121-133. · Zbl 0319.76032
[15] Ghani, A. & Polifke, W.2021An exceptional point switches stability of a thermoacoustic experiment. J. Fluid Mech.920, R3. · Zbl 1502.76090
[16] Grosch, C.E. & Salwen, H.1968The stability of steady and time-dependent plane Poiseuille flow. J. Fluid Mech.34 (1), 177-205. · Zbl 0169.28501
[17] Gustavsson, L.H.1986Excitation of direct resonances in plane Poiseuille flow. Stud. Appl. Maths75 (3), 227-248. · Zbl 0614.76039
[18] Gustavsson, L.H. & Hultgren, L.S.1980A resonance mechanism in plane Couette flow. J. Fluid Mech.98 (1), 149-159. · Zbl 0432.76049
[19] Heiss, W.D.2012The physics of exceptional points. J. Phys. A: Math. Theor.45 (44), 444016. · Zbl 1263.81163
[20] Jones, C.A.1988Multiple eigenvalues and mode classification in plane Poiseuille flow. Q. J. Mech. Appl. Maths41 (3), 363-382. · Zbl 0662.76055
[21] Kato, T.1976Perturbation Theory for Linear Operators. 2nd edn. , vol. 132. Springer. · Zbl 0342.47009
[22] Kern, J.S., Beneitez, M., Hanifi, A. & Henningson, D.S.2021Transient linear stability of pulsating Poiseuille flow using optimally time-dependent modes. J. Fluid Mech.927, A6. · Zbl 1487.76033
[23] Koch, W.1986Direct resonances in Orr-Sommerfeld problems. Acta Mech.59 (1-2), 11-29. · Zbl 0619.76068
[24] Lee, S.-B., Yang, J., Moon, S., Lee, S.-Y., Shim, J.-B., Kim, S.W., Lee, J.-H. & An, K.2009Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett.103, 134101.
[25] Luitz, D.J. & Piazza, F.2019Exceptional points and the topology of quantum many-body spectra. Phys. Rev. Res.1, 033051.
[26] Mack, L.M.1976A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech.73 (3), 497-520. · Zbl 0339.76030
[27] Mensah, G.A., Magri, L., Silva, C.F., Buschmann, P.E. & Moeck, J.P.2018Exceptional points in the thermoacoustic spectrum. J. Sound Vib.433, 124-128.
[28] Miller, J.L.2017Exceptional points make for exceptional sensors. Phys. Today70 (10), 23-26.
[29] Or, A.C.1991On the behaviour of a pair of complex eigenmodes near a crossing. Q. J. Mech. Appl. Maths44 (4), 559-569. · Zbl 0745.76020
[30] Orr, W.M.1907The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Proc. R. Irish Acad. A27, 69-138.
[31] Orszag, S.A.1971Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech.50 (4), 689-703. · Zbl 0237.76027
[32] Özdemir, Ş.K., Rotter, S., Nori, F. & Yang, L.2019Parity-time symmetry and exceptional points in photonics. Nat. Mater.18 (8), 783-798.
[33] Pier, B. & Schmid, P.J.2017Linear and nonlinear dynamics of pulsatile channel flow. J. Fluid Mech.815, 435-480. · Zbl 1383.76567
[34] Pier, B. & Schmid, P.J.2021Optimal energy growth in pulsatile channel and pipe flows. J. Fluid Mech.926, A11. · Zbl 1487.76032
[35] Reddy, S.C. & Henningson, D.S.1993Energy growth in viscous channel flows. J. Fluid Mech.252, 209-238. · Zbl 0789.76026
[36] Reddy, S.C., Schmid, P.J. & Henningson, D.S.1993Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Maths53 (1), 15-47. · Zbl 0778.34060
[37] Schmid, P.J.2007Nonmodal stability theory. Annu. Rev. Fluid Mech.39 (1), 129-162. · Zbl 1296.76055
[38] Shanthini, R.1989Degeneracies of the temporal Orr-Sommerfeld eigenmodes in plane Poiseuille flow. J. Fluid Mech.201 (1), 13-34. · Zbl 0667.76060
[39] Sommerfeld, A.1908 Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In Proceedings of the 4th International Congress of Mathematicians, vol. III, pp. 116-124. · JFM 40.0806.02
[40] Squire, H.B.1933On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. Lond. A142 (847), 621-628. · JFM 59.1458.02
[41] Trefethen, L.N.1997Numerical Linear Algebra. Society for Industrial and Applied Mathematics. · Zbl 0874.65013
[42] Trefethen, L. & Embree, M.2005Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press. · Zbl 1085.15009
[43] Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A.1993Hydrodynamic stability without eigenvalues. Science261 (5121), 578-584. · Zbl 1226.76013
[44] Von Kerczek, C.H.1982The instability of oscillatory plane Poiseuille flow. J. Fluid Mech.116, 91-114. · Zbl 0491.76046
[45] Weideman, J. & Reddy, S.2000A matlab differentiation matrix suite. ACM Trans. Math. Softw.26 (4), 465-519.
[46] Zhong, Q.2019 Physics and applications of exceptional points. PhD thesis, Michigan Technological University, https://doi.org/10.37099/mtu.dc.etdr/953.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.